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Background material Basis of a Banach space

Let (B, | |) be a Banach space.

A basis for B is a sequence vy, - - , Uy, - € B such that for each
x € B there is a unique sequence \1,--- , A\, -+ € R such that

X = Z,@l AxUi, where the convergence of the series is in the sense
of the norm: x = lim,_, 22:1 AiUyi. Thus the vectors vy, are
linearly independent and span a space (their finite linear
combinations) that is dense in B.

Example. Let ux € (P be {04 };>1 (has 1 in the position k and 0
otherwise). Then {ux},=1 is a basis of (P, for all p € [1,00). O

Given a basis, a subtle result is that the map A\, : B — R, x — A\x(x)
is continuous for all k (see [7, Theorem 1.6]).

If for any x € B the convergence of » ,_, A.uy is unconditional,
{uy} is said to be an unconditional basis.
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Background material Basis of a Hilbert space

m Let H be a Hilbert space.
H is said to be separable if it contains a countable dense subset.

Examples. (?. We will also see that the (complex-valued) L?(]0,1]),
L?(R) are separable.

Orthogonal and orthonormal sets. A set {1,} in I{ is an orthogonal
set if (¢, 1) = 0 whenever n # m. If in addition (1,,,1,) = 1 for
all n, the set is said to be orthonormal.

Orthonormal basis (or complete orthonormal systems). An
orthonormal set {7,} is a basis of H if and only if

h="23 ns1(hy¥n)tn, [+]
where the convergence is with respect to the J{-norm.
The point is that if h = _ A\, then A\, = (f, 1,). O
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Background material Basis of a Hilbert space

Lemma. A set {¢,},>1 is an orthonormal basis if and only if
[n] =1 forall nand 3=, |(h, vn) 2 = | h|? for all h € 3.

If it is an orthonormal basis, then

[A1? = 132 par (A n) nl® = 32 oal (B, n) 2.

Conversely, the condition for ¢/, states that

L= ou]? = 30 oal(Wn, a2 = 14+ 32 2 (k)
that (¢, 1,) = 0 for all n, k.
On the other hand, the condition implies that sum > ., (h, ¥)1,

converges (cf. [8, Th. 4.11]) and then h — " _ (h,¥,)1), must
vanish because this difference is orthogonal to all ¢,,. ]

, which implies

Corollary. Orthonormal basis are unconditional basis.
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Background material Riesz basis and dual basis

Riesz basis: A basis 1/, of H for which there are constants
0 < ¢ < C < oo such that

clhl? <321l (h n) P < C|AJP. [+]
B Riesz bases are unconditional.
Applying [#] to ¢, we get that [¢,] < /C:

[$al* = (W 0 = S| (G i) 2 < Clnl?. =

Let {¢,} be a Riesz basis. A set {1)"} is called a dual Riesz basis if
(hn, %) = 0n.m (biorthogonality) and

B =S (b 03 tn = S (b, ) o]

The pair ({¥,},{1}}) of dual Riesz basis is called a biorthogonal
basis.
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Background material Frames and dual frames

Remark. A system {1),} satisfying [] in the previous page, not
necessarily a basis of J{, but spanning a dense subspace, is called a
frame of J(.

The bound |¢,| < v/C seen for a Riesz basis, and its proof, is valid
for frames.

A frame for which ¢ = C is said to be tight.

m Given a frame {1, }, there is a dual frame {1/} } that satisfies the
relations [xx] in the previous page.
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Background material Orthogonal decompositions and projections

h''= Py(h)

V is a closed subspace of H{. Then H{ = V & V*. This defines a
linear map Py : H — V, h+— h', where h = i + h” is the unique
decomposition of h with # € V and h" € V*.

This map is called the orthogonal projection of J{ on V.
Note that h” = P, . (h).
m If {¢)}jes is an orthonormal basis of V, Py (h) = >, ,(h, ¢;)¢;.
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Notions of Fourier analysis
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Fourier analysis Real Fourier series

=27 =T T 2Tt
m f(t) periodic function of period T.
m w =27/ T angular frequency.
Orthogonal relations
0 if n#£n

fOT cosnwtcosnwt =< T ifn=n=0
T/2 ifn=n>0
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Fourier analysis Real Fourier series

o 0 ifn#n
Jo sinnwtsinn'wt = . /
T/2 ifn=n>0
[] sin nwt cos n'wt = 0
Synthesis
f(t) = %2 4 > ,>1(ancos nwt + b, sin nwt)

For bounded and piece-wise differentiable functions, the equality
holds at points t where f(t) is continuous. At jumps, the Fourier
series is equal to (f(t+) + f(t—))/2.
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Fourier analysis  Real Fourier series
Analysis
a, == f:+T f(t) cos nwtdt (n > 0)
b, =2 f:+T f(t)sin nwtdt (n > 1)
Even and odd functions
f(t)=1f(—t) = a, =+ foT/2 f(t) cos nwtdt, b, = 0.
F(t) = —f(—t) = a, =0, b, = & [[T/2 £(¢) sin nwtdt.
Case T =27
f(t) = % + >_,=1(ancos nt + b,sin nt)
an==[" f(t)cosntdt, by == [T f(t)sinntdt
Amplitude-Phase form
f(t) = Ao+ > =1 Ancos(nwt + )
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Fourier analysis Real Fourier series
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Fourier analysis  Trigonometric polynomials

Going round the circle. The function [0,1] — C, t — €°™", goes
once round the circle S' ¢ C.

So the function (e2t)" = €27t goes n times round S*.
Lemma fol e?™t = 0 if n# 0, and = 1 for n = 0. Consequently, for
nn cZ, ];)1 e2minte=2min't — 0 if n/ £ n, and = 1if 0 = n.

Trigonometric polynomials (TPs). These are expressions of the form
p(t) = ,cF ane®™, where F C Z is finite and a, € C. It is a
superposition of pure harmonics (synthesis).

Lemma. If p(t) is a TP, then

L= fol p(t)e=2mint,

So p(t) determines its coefficients (analysis). If we look at the a, as
a function f : Z € C, then we have

= [} f(t)e 2" and f(t) = 3, F(n)e?™ .
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Fourier analysis  Trigonometric polynomials

m What functions can be approximated by trigonometric polynomials?

The TPs form a subalgebra P of the algebra C = ([0, 1]) of
continuous functions f : [0,1] — C.

The algebra P is closed under complex cojugation and contains de
constants. Under these conditions, the Stone-Weierstrass theorem
(cf. [9, Th 8.1]) applies and hence P is dense in C.

This means that for any f € C and any € > 0, there is a p € P such
that |f(t) — p(t)| < e forall t € [0,1].

This was anticipated by J. Fourier in his Thérorie analytique de la
chaleur (1822), who claimed that any f € C could be expressed as
trigonometric expansion

f(t) =3 ,cza.€™" (synthesis), with

a,=f(n) = fol f(t)e 2™t (analysis).
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Fourier analysis Caleson’s theorem

It was not until 1966 that L. Carleson proved, in his paper On
convergence and growth of partial sums of Fourier series, that (for a
continuous function f) the Fourier partial sums converge pointwise
almost everywhere to f.

m That the convergence could not be ‘everywhere’ for all functions
was known since the example, provided by du Bois-Raymond in 1873,
of a continuous function whose Fourier series diverges in one point
(cf. [10, Ch. 18]).

Remark. Carleson's stated and proved his theorem for functions that
are in L2([0, 1]) (square-integrable functions).

Plancherel identity. |f|3 = [, |f(t)]>dt = 3,5 |F(n)]*
Consequently, by the lemma on page 7, the functions
e,,(t) — e27rint

form an orthonormal basis of L%([0,1]). Hence this space is separable.
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Fourier analysis  General intervals [a, b]

m Let [a, b|, a < b, be an arbitrary interval, and set L = b — a. Then
the following functions

1 e27rint/L
VL

form an orthonormal basis of L?([a, b].

In the case of the inteval [—m, 7|, used by many authors, the basis is
(redefining the symbol ¢,)

en(t) = e
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Fourier analysis  Time-frequency dictionary for Fourier series

Time/Space [0, 1] Frequency Z
derivative polynomial
F(t) f'(n) = 2min f(n)
circular convolution product
(f g)(t) = J; F(t — s)g(s)ds | F+g(n) = F(n)g(n)
translat|on/sh|ft modulation
(A =f(t—s) | 7f(n)=e>™F(n)
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Fourier analysis Continuous Fourier transform

If f € L2(R), its Fourier transform is the function (¢), ¢ € R,
defined by

= [ f(t)e ?"¢tdt (analysis).
The inverse Fourier transform is the relation
f(t) = [ F(£)e*™ et de (synthesis).
Plancherel’s identity:
1P = fo (0t — fy [FORdE = 1715
Remark. The trigonometric functions ¢¢(t) = e*™* do not belong

to L?(R), but the inverse Fourier transform shows that they can be
“superposed”, with the coefficients (&), to get f(t).

Alternative formalism. f f f(t)e “tdt.
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Fourier analysis

Continuous Fourier transform

Time/Space R Frequency R
derivative polynomial
dif(t) = f'(t) () = 2mi€ F(€)
convolution product
(f x8)(t) = Jo F(t — 5)a(s)ds | F+g(&) = F(©)a(©)
translatlon/delay modulation
(sF)(t) = f(t =) Tf(€) = e (g
rescaling/dilation rescaling
fs(t) = (1/s) f(t/s) £(6) = f(s9)
conjugate flip conjugate
(1) = F(=1) {GER{O
S. Xambé (UPC & IMTech) AL&DNN 0/11/2021
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Fourier analysis Remarks

10 10 10
08 o8 08
06 06 06
04 04 04
02 02 02
00 00 00
02 02 02
04 0.4 0.4

4 3 2 A o 1 2 3 a 4 3 2 a0 1 2 3 a 4 3 2 a0 1 2 3 a

Left: Graph of the Mexican hat, (1 — t2)e~*/? (it is the negative of
the second derivative of e‘t2/2). Center and Right: same, but
rescaled by 3 and 1/2, respectively.

10 06

Gauss' function

42
et/2

08
06

and its derivative.

02

00 -0.6
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Fourier analysis Remarks

It can be seen that if an operator A : [?(R) — L?(R) commutes with
translations (A(7f) = 75(Af)), then there is a function
A(€) € L*(R), called the symbol of A, such that

AF() = A©)F (9.
For example, c?t(f) = 2mi€.

Smoothness and decay at infinity. Since f’(ﬁ) = 2mi€ £(€), by
Plancherel’s formula we have, provided ' € L?(R),

[ 4m2€2|f(€)2de = | )3 < .

This shows, because of the factor £2 in the integrand, that |f(&)[?
must decay fast enough to insure that the integral is finite.

In general, it can be seen that the smoother the function f(t), the
faster has to be the decay of |f(£)| (see [4, Theorem 2.5]).
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Fourier analysis Generalizations

For each n € Z, the function ¢,(t) = > is a homomorphism

¢, : R — U; (the group U; = S' is also denoted T by many authors
writing on hamonic analysis). And the set {¢,},cz is a multiplicative
group isomorphic to Z (n < ¢,).

Similarly, for each ¢ € R, the function ¢(t) = > is a

homomorphism ¢, : R — U; And the set {¢¢}¢cr is a multiplicative
group isomorphic to R (£ < ¢).

There is a similar formalism for Z¢ and R?. In the latter case, for
example, analysis and synthesis of a function f € L?(RY) is given by:

(&) = [qo F(t)e ™t dt
and (inverse Fourier transform)
t) = [oo F(E)€™EEdE.
Plancherel: |f|3 = [oo |F(t)]Pdt = [oo |F(€)2dE = |F]3.
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Fourier analysis Discrete Fourier transform

https://www.math.ucla.edu/ tao/preprints/fourier.pdf (Tao)
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Wavelets

Definitions
Graphics
Calderron’s theorem
Discretization
Scalogram
Spectrogram
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Wavelets Definitions

A wavelet is a function 1) € L?(R) such that the functions
Vik(t) =222t — k), jke Z

for an orthonomal basis of L?(R).

Orthogonal wavelet transform
WE(j, k) = (f,¥jx) = Jo F(£)0k(

Wavelet syntheSIs

For any f € L*(R),
f= zj,k<f7 Vjk) Uik

In the sequel we will further assume that [ ¢dt =0 and || = 1.
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Wavelets Definitions

Haar Mexican Hat Morlet Meyer Daubechies

If ) is a wavelet, for u,s € R, s > 0, define
boult) = Zv(i52)
The factor 1/4/s insures that |¢s | = 1.
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def

def

def

def

Wavelets Graphics

atom(f,s,u):
return lambda t: f((t-u)/s)/sqrt(s)

haar(t):

if 0 <=t < 0.5: return 1
elif 0.5 <=t < 1: return -1
else: return O

mex(t): return (1-t**2)*exp(-t**2/2)

morlet(t): return exp(-t**2/2)*cos(5*t)
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Wavelets Graphics

a = atom(haar,1,0)
b = atom(haar,?2,2)
¢ = atom(haar,0.5,-2)

x = np.linspace(-2.5,4.5,500)

ya = [a(t) for t in x]

yb = [b(t) for t in x]

yc = [c(t) for t in x]
plt.plot(x,ya,’-’,color="b’)
plt.plot(x,yb,’-’,color="r’)
plt.plot(x,yc,’-’,color="g’)
plt.show()
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Wavelets Graphics: Haar

1.5+

— 1 for0<t<0.5
P(t)=49 -1 for05<t<1
107 0 otherwise
0.5
0.0 4
_0|5 .
V1/9,—2(t)
-1.01 P2.4(t)
1.5+ T — T T T T T T
=2 -1 0 1 2 3 4
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Wavelets Graphics: Haar

a = atom(mex,1,0)
b = atom(mex,?2,3)
¢ = atom(mex,0.5,-2)

x = np.linspace(-5,8,300)

ya = [a(t) for t in x]
yb = [b(t) for t in x]
yc = [c(t) for t in x]

plt.plot(x,ya,’-’,color="Db’)
plt.plot(x,yb,’-’,color="r’)
plt.plot(x,yc,’-’,color="g’)
plt.show()

S. Xambé (UPC & IMTech) AL&DNN 9/11/2021

33/64



Wavelets Grphics: Mexican hat

1.50 -
1.25 - ?/1(75) - (1 - tz)e_tQ/Q
You(t)  Prja,—a(t)

1.00 -

0.75 -

0.50 -

0.25 -
0.00 -

—0.25 - \\\\h_#,f”

—0.50

—4 =2 0 2 4 6 8
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Wavelets Grphics: Mexican hat

a = atom(morlet,1,0)
b = atom(morlet,2,3)
¢ = atom(morlet,0.5,-2)

x = np.linspace(-5,8,300)
ya = [a(t) for t in x]
yb = [b(t) for t in x]
yc = [c(t) for t in x]

plt.plot(x,ya,’-’,color="b’)
plt.plot(x,yb,’-’,color="r’)
plt.plot(x,yc,’-’,color="g’)
plt.show()
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Wavelets Grphics: Mexican hat

1.5

W(t) = e /2 cos(5t)

|
‘ /“{\[\ AN

0.0 1 \ " V/ —

—0.5 1 o3
12,2

T T T T T T
-4 —2 0 2 4 6 8
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Wavelets Calderén’s reproducing formula

Continuous wavelet transform

Wf(sv U) wsu fR wsu

Calderon’s admissible condition
00 ()2
Cp= j‘o |¢(§)\ dé < o0
Theorem (Calderén 1966) If [«] is sastified, then
fo f WF (s, u)bs u(t )d”ds.
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Wavelets Discretization

O-=_2NWhO1O N 0
O:

Yi(t) = 229Dt — k),
where j indicates the scale (in octaves) and k the position. For each
J, the position is sampled at 2/ points.
Synthesis or reconstruction formula
fF(t) =D ez kez (L i)Y k(t) + R(2),

where R(t) is a residual, and assuming the 1); , form an orthonormal
basis.
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Wavelets  Scalogram

(a) (®)

Fig. 2. Clustering and persistence illustrated. respectively, in Donoho and Johnstone’s (a) Doppler and (b) Bumps test signals [1]. The signals lie atop
the time—frequency tiling (Fig. 1) provided by a seven-scale wavelet transform. Each tile is colored as a monotonic function of the wavelet coefficient

53 .
energy w;. with darker tiles indicating greater energy.

From [11, Fig. 2]: Clustering and persistence illustrated, respectively,
in Donoho and Johnstone's [see [12]] (a) Doppler and (b) Bumps test
signals [1]. The signals lie atop the time—frequency tiling provided by
a seven-scale wavelet transform. Each tile is colored as a monotonic
function of the wavelet coefficient energy w?, with darker tiles
indicating greater energy.
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Wavelets  Spectrogram
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From Wikepedia/Spectrogram.
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Multiresolution analysis

Definitions and notations
The MRA wavelet
The Haar MRA
In practice
The fast wavelet transform
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Multiresolution analysis Definitions and notations

A multiresolution analysis (MRA; Mallat, 1989) of L*(R) is a
sequence of closed subspaces V; of L?(R), j € Z,

.CVaycVicWycVic Vo VzC - C L3(R)
with the following properties:
(1) N;V; = {0} (trivial intersection) and U;V; is dense in L*(R).
(2) f(t) € V; & f(2t) € Viy1 (scaling property).

(3) f(t) € Vo & f(t — k) € f for any k € Z (translational
invariance).

(4) There exists a scaling function ¢ € V; such that {p(t — k) }kez is
an orthonomal basis of V.
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Multiresolution analysis Definitions and notations

Notation: ¢; i(t) = 2/2p(2t — k) = 727 SO(t_zz:jjk)

® {j k}kez is an orthonormal basis of V;, for all j € Z.
m Pif(t) = 2k (F, 0 wik (P = Py).
" Vo=V, LW, hence Pyy = P+ @, where @ = Py,

Remark. &;W; is dense in L*(R).
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Multiresolution analysis  The MRA wavelet

Theorem (Mallat). The scaling function ¢ determines a wavelet
such that {¢(t — k)} ez is an orthonormal basis of .

m The functions {1; x }kez form an orthonormal basis of W}, and
hence ij(t) = ZkEZ<f’ wjk>L)Jk

m The set {1} kez is an orthonormal basis of L?(R).

S. Xambé (UPC & IMTech) AL&DNN 9/11/2021 44 /64



Multiresolution analysis ~ The Haar MRA

Scaling function

(t) = 1 fog<t<«l1
b= 0 otherwise

m o(t—k)is1for k <t < k+1and 0 otherwise.

Vo: closure of the span of the functions ¢(t — k): functions in L?(R)
that are locally constant and with jumps at the integers.

V;: is the closure of the span of {¢; x}kez: functions in L?(R) that

are locally constant with jumps only at the integer multiples of 27/.

S. Xambé (UPC & IMTech) AL&DNN 9/11/2021 45 /64



Multiresolution analysis ~ The Haar MRA

Haar wavelet

We have met it before: ¢)(t)is1in0<t<1/2, =1inl/2<t <1,
and 0 elswhere.

Wo: closure of {t)(t — k)},ez: locally constant functions in L?(R)
with jumps only at half-integers and average 0 between any two
integers.
2 for27k <t<27(k+1/2)
Yie(t) =8 =2 for279(k+1/2) <t<27(k+1)
0 otherwise
Wi;: closure of {¢;x}kez: locally constant functions in L?(R) with

jumps only at integer multiples 2** and with average 0 between any
two integer multiples of 2/.
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Multiresolution analysis

The Haar MRA

137 — 1 for0<t<0.5
W(t) —1 for05<t<1
107 0 otherwise
0.5
0.01
_O|5 .
V1/9,—2(t)
-1.0- P2.4(t)
1.5+ T — T T T T T T
-2 -1 0 1 2 3 4
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Multiresolution analysis ~ The Haar MRA

m The Haar functions form an orthonormal basis of L?(R).

= The functions {p,v;, :j < 0,0 < k < 2/} form a basis of
L2([0, 1]).
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Multiresolution analysis In practice

Let us look at the segment
V_, C V_n+1 c---CcV,,cCcViCc W

The V_, contains the coarser representations and V/ the finer. Then

Vo= Vo1& W,
=VLo,eW_ 16 W,

:an@Wf]_@WfZ@"'@an
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Multiresolution analysis In practice

From [5, Fig. 14]

Vo
L]
I
V., 1 ﬂ W_,
L1 \_|J
V., | W_,
\—|_
V., W_,
]
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Multiresolution analysis In practice

m The scaling function ¢ satisfies the scaling property:
p(t) = (2t) + (2t —1).

This implies that
Pik = (Pi+12k + Pjr12k41)/ V2

and so we have the recurrence relations for the approximation
coefficients

<f7 99j,k> = \%(<f7 99j+1,2k> + <f7 <Pj+1,2k+1>)

The wavelet 1) satisfies the scaling relation

b(t) = p(2t) — (2t — 1)

which implies a recurrent relation for the detail coefficients

(f k) = Z5((F, oirr20) = (F, pje12001))
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Multiresolution analysis  The fast wavelet transform

We have » € Vy C V4, and the @1 x(t) = v/2¢(2t — k) is an
orthonormal basis of V7, so we have a scaling equation

p(t) = X ehipri(t) = V23 hep(2t — k),
for some coefficients hy.
Similarly, there are coefficients g, such that
U(t) = 3y grprk(t) = V23, 8kp(2t — k).
Example. In the Haar case, the only non-zero coefficients are

ho = h; = 1/\@ and gp = —g1 = 1/\@ In particular, the sums in
the scaling equations are finite.
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Multiresolution analysis  The fast wavelet transform

We will assume, as we can for many wavelets, that in the scaling
equations there are only L non-zero terms.

Start with the data {a, s = (f. k) fo<k<2/, and define
ajx = (f,pjk) and d; x = (f,1);«) for each scale j < J. Then

2/-i—1
a.lvk - zn:o hnaj+1,n+2kv

2J-i1
djk = Zn:o 8ndj+1,n+2k-
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Multiresolution analysis  The fast wavelet transform

Vo ° . ° . . . . .
n/\G
V_4 ) ° ° ° o o o o | W_,

Vs | e | o | W3

From [5, Fig. 17].
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Multiresolution analysis  The fast wavelet transform

For the relation with filter banks, see [5, §3.3.2].

For the Daubechies and similar families of wavelets, see [5, §3.4].
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Spectral Techniques on
Graphs
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Spectral techniques on graphs

[13] (bauer-2012)

[14] (dong-2017)

[15] (pan-chen-ortega-2020)

[16] (wu-pan-chen-long-zhang-philip-2021)
[17] (gama-ribeiro-bruna-2018)
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Notes P3

Harmonic analysis is the study of objects (functions, measures,
etc.), defined on topological groups. The group structure en-
ters into the study by allowing the consideration of the trans-
lates of the object under study, that is, by placing the object in
a translation-invariant space. The study consists of two steps.
First: finding the “elementary components” of the object, that
is, objects of the same or similar class, which exhibit the simplest
behavior under translation and which “belong” to the object un-
der study (harmonic or spectral analysis); and

Second: finding a way in which the object can be construed as a
combination of its elementary components (harmonic or spectral
synthesis).

From the Preface of [6].
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Notes P5

In this session, we consider real and complex spaces (mainly complex spaces).

If B is finitely-generated, the notion of basis coincides with the notion introduced
in elementary linear algebra: a finite set of linearly independent vectors that span
the space. Since the results we will state turn out to be obvious in this case, we
will assume that B is not finitely generated.
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Notes P6

In the complex case, an inner-product is subject to the following properties:
(1) It is linear with respect to the first variable, and

(2) it is conjugate-symmetric, (x,y) = (y,x)~, which implies that it is
conjugate-linear with respect to the second variable: (x, A\y) = A(x,y).

In particular, (x, x) is real for any x, and the condition for being semi-positive
(positive) is the same as for the real case: (x,x) > 0 for all x ({x,x) > 0 for all

x #0).

The formal series [*], >~ <1 (h, ¥n)t)n, is called the Fourier series of h with
respect to {¢,}. So the statement says that the Fourier series of h converges in
norm to h.
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Notes P17

In the Théorie analytique de la chaleur, the synthesis and analysis was phrased in
terms of periodic functions.

The relation with € is that any f € € can be prolongued to a function  defined
on R that is periodic of period 1:

f(x) = f(x — [x]), where [x] is the integer part of x, that is, the greatest
integer that does not exceed x.

In the formula f(n) = [ f(t)e >""dt, the factor e 2™ never vanishes, so for

each n all values f(t) contribute to f(n). In particular, a local change in f(t)
afects all 7(n).
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FI(€) = [g F'(t)e 2t dt
= e 2T d(f(t)) _
= e P ()T — [p F(t)d(e )
= 27icf (€).
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