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UPC & IMTech

9/11/2021
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Background material Basis of a Banach space

Let (B, || ||) be a Banach space. N

A basis for B is a sequence u1, · · · , uk , · · · ∈ B such that for each
x ∈ B there is a unique sequence λ1, · · · , λk , · · · ∈ R such that
x =

∑
k⩾1 λkuk , where the convergence of the series is in the sense

of the norm: x = limn→∞
∑n

k=1 λkuk . Thus the vectors uk are
linearly independent and span a space (their finite linear
combinations) that is dense in B.

Example. Let uk ∈ ℓp be {δk,j}j⩾1 (has 1 in the position k and 0
otherwise). Then {uk}k⩾1 is a basis of ℓp, for all p ∈ [1,∞).

Given a basis, a subtle result is that the map λk : B → R, x 7→ λk(x)
is continuous for all k (see [7, Theorem 1.6]).

If for any x ∈ B the convergence of
∑

k⩾1 λkuk is unconditional,
{uk} is said to be an unconditional basis.
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Background material Basis of a Hilbert space

Let H be a Hilbert space. N

H is said to be separable if it contains a countable dense subset.

Examples. ℓ2. We will also see that the (complex-valued) L2([0, 1]),
L2(R) are separable.

Orthogonal and orthonormal sets. A set {ψn} in H is an orthogonal
set if ⟨ψn, ψm⟩ = 0 whenever n ̸= m. If in addition ⟨ψn, ψn⟩ = 1 for
all n, the set is said to be orthonormal.

Orthonormal basis (or complete orthonormal systems). An
orthonormal set {ψn} is a basis of H if and only if

h =
∑

n⩾1⟨h, ψn⟩ψn, [∗]

where the convergence is with respect to the H-norm. N

The point is that if h =
∑

n⩾1λnψn, then λn = ⟨f , ψn⟩.
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Background material Basis of a Hilbert space

Lemma. A set {ψn}n⩾1 is an orthonormal basis if and only if
||ψn|| = 1 for all n and

∑
n⩾1|⟨h, ψn⟩|2 = ||h||2 for all h ∈ H.

If it is an orthonormal basis, then

||h||2 = ||
∑

n⩾1⟨h, ψn⟩ψn||2 =
∑

n⩾1|⟨h, ψn⟩|2.

Conversely, the condition for ψk states that

1 = ||ψk ||2 =
∑

n⩾1|⟨ψk , ψn⟩|2 = 1 +
∑

n ̸=k |⟨ψk , ψn⟩|, which implies
that ⟨ψk , ψn⟩ = 0 for all n, k .

On the other hand, the condition implies that sum
∑

n⩾1⟨h, ψn⟩ψn

converges (cf. [8, Th. 4.11]) and then h −
∑

n⩾1⟨h, ψn⟩ψn must
vanish because this difference is orthogonal to all ψn.

Corollary. Orthonormal basis are unconditional basis.
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Background material Riesz basis and dual basis

Riesz basis: A basis ψn of H for which there are constants
0 < c ⩽ C <∞ such that

c ||h||2 ⩽
∑

n⩾1|⟨h, ψn⟩|2 ⩽ C ||h||2. [∗]

Riesz bases are unconditional.

Applying [∗] to ψn, we get that ||ψn|| ⩽
√
C :

||ψn||4 = ⟨ψn, ψn⟩2 =
∑

k⩾1|⟨ψn, ψk⟩|2 ⩽ C ||ψn||2.

Let {ψn} be a Riesz basis. A set {ψ∗
n} is called a dual Riesz basis if

⟨ψn, ψ
∗
m⟩ = δn,m (biorthogonality) and

h =
∑

n⟨h, ψ∗
n⟩ψn =

∑
n⟨h, ψn⟩ψ∗

n. [∗∗]

The pair ({ψn}, {ψ∗
n}) of dual Riesz basis is called a biorthogonal

basis.
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Background material Frames and dual frames

Remark. A system {ψn} satisfying [∗] in the previous page, not
necessarily a basis of H, but spanning a dense subspace, is called a
frame of H.

The bound ||ψn|| ⩽
√
C seen for a Riesz basis, and its proof, is valid

for frames.

A frame for which c = C is said to be tight.

Given a frame {ψn}, there is a dual frame {ψ∗
n} that satisfies the

relations [∗∗] in the previous page.
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Background material Orthogonal decompositions and projections

V

h

h′ = PV (h)

h′′ = h− h′ ∈ V ⊥

V is a closed subspace of H. Then H = V ⊕ V⊥. This defines a
linear map PV : H → V , h 7→ h′, where h = h′ + h′′ is the unique
decomposition of h with h′ ∈ V and h′′ ∈ V⊥.

This map is called the orthogonal projection of H on V .

Note that h′′ = PV⊥(h).

If {φj}j∈J is an orthonormal basis of V , PV (h) =
∑

j∈J⟨h, φj⟩φj .
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Fourier analysis Real Fourier series

f(t)

T−T−2T 2T t

f (t) periodic function of period T .

ω = 2π/T angular frequency.

Orthogonal relations

∫ T

0
cos nωt cos n′ωt =


0 if n ̸= n′

T if n = n′ = 0

T/2 if n = n′ > 0
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Fourier analysis Real Fourier series∫ T

0
sin nωt sin n′ωt =

{
0 if n ̸= n′

T/2 if n = n′ > 0∫ T

0
sin nωt cos n′ωt = 0

Synthesis

f (t) = a0
2
+
∑

n⩾1(an cos nωt + bn sin nωt)

For bounded and piece-wise differentiable functions, the equality
holds at points t where f (t) is continuous. At jumps, the Fourier
series is equal to (f (t+) + f (t−))/2.
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Fourier analysis Real Fourier series

Analysis

an =
2
T

∫ s+T

s
f (t) cos nωtdt (n ⩾ 0)

bn =
2
T

∫ s+T

s
f (t) sin nωtdt (n ⩾ 1)

Even and odd functions

f (t) = f (−t) ⇒ an =
4
T

∫ T/2

0
f (t) cos nωtdt, bn = 0.

f (t) = −f (−t) ⇒ an = 0, bn =
4
T

∫ T/2

0
f (t) sin nωtdt.

Case T = 2π

f (t) = a0
2
+
∑

n⩾1(an cos nt + bn sin nt)

an =
1
π

∫ π
−π f (t) cos nt dt, bn =

1
π

∫ π
−π f (t) sin nt dt

Amplitude-Phase form

f (t) = A0 +
∑

k⩾1An cos(nωt + αn)
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Fourier analysis Real Fourier series
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Fourier analysis Trigonometric polynomials

Going round the circle. The function [0, 1] → C, t 7→ e2πit , goes
once round the circle S1 ⊂ C.

So the function (e2πit)n = e2πint goes n times round S1.

Lemma
∫ 1

0
e2πint = 0 if n ̸= 0, and = 1 for n = 0. Consequently, for

n, n′ ∈ Z,
∫ 1

0
e2πinte−2πin′t = 0 if n′ ̸= n, and = 1 if n′ = n.

Trigonometric polynomials (TPs). These are expressions of the form
p(t) =

∑
n∈F ane

2πint , where F ⊂ Z is finite and an ∈ C. It is a
superposition of pure harmonics (synthesis).

Lemma. If p(t) is a TP, then

an =
∫ 1

0
p(t)e−2πint .

So p(t) determines its coefficients (analysis). If we look at the an as
a function f̂ : Z ∈ C, then we have

f̂ (n) =
∫ 1

0
f (t)e−2πint and f (t) =

∑
n∈F f̂ (n)e

2πint .
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Fourier analysis Trigonometric polynomials

What functions can be approximated by trigonometric polynomials?

The TPs form a subalgebra P of the algebra C = C([0, 1]) of
continuous functions f : [0, 1] → C.

The algebra P is closed under complex cojugation and contains de
constants. Under these conditions, the Stone-Weierstrass theorem
(cf. [9, Th 8.1]) applies and hence P is dense in C.

This means that for any f ∈ C and any ϵ > 0, there is a p ∈ P such
that |f (t)− p(t)| < ϵ for all t ∈ [0, 1].

This was anticipated by J. Fourier in his Thérorie analytique de la
chaleur (1822), who claimed that any f ∈ C could be expressed as
trigonometric expansion

f (t) =
∑

n∈Zane
2πint (synthesis), with

an = f̂ (n) =
∫ 1

0
f (t)e−2πint (analysis).

N
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Fourier analysis Caleson’s theorem

It was not until 1966 that L. Carleson proved, in his paper On
convergence and growth of partial sums of Fourier series, that (for a
continuous function f ) the Fourier partial sums converge pointwise
almost everywhere to f .

That the convergence could not be ‘everywhere’ for all functions
was known since the example, provided by du Bois-Raymond in 1873,
of a continuous function whose Fourier series diverges in one point
(cf. [10, Ch. 18]).

Remark. Carleson’s stated and proved his theorem for functions that
are in L2([0, 1]) (square-integrable functions).

Plancherel identity. ||f ||22 =
∫ 1

0
|f (t)|2dt =

∑
n∈Z |f̂ (n)|2.

Consequently, by the lemma on page 7, the functions

en(t) = e2πint

form an orthonormal basis of L2([0, 1]). Hence this space is separable.
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Fourier analysis General intervals [a, b]

Let [a, b], a < b, be an arbitrary interval, and set L = b − a. Then
the following functions

1√
L
e2πint/L

form an orthonormal basis of L2([a, b].

In the case of the inteval [−π, π], used by many authors, the basis is
(redefining the symbol en)

en(t) =
1
2π
e int .
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Fourier analysis Time-frequency dictionary for Fourier series

Time/Space [0, 1] Frequency Z

derivative polynomial

f ′(t) f̂ ′(n) = 2πin f̂ (n)

circular convolution product

(f ∗ g)(t) =
∫ 1

0
f (t − s)g(s)ds f̂ ∗ g(n) = f̂ (n)ĝ(n)

translation/shift modulation

(τs f )(t) = f (t − s) τ̂s f (n) = e−2πisn f̂ (n)
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Fourier analysis Continuous Fourier transform

If f ∈ L2(R), its Fourier transform is the function f̂ (ξ), ξ ∈ R,
defined by

f̂ (ξ) =
∫
R
f (t)e−2πiξtdt (analysis).

The inverse Fourier transform is the relation

f (t) =
∫
R
f̂ (ξ)e2πiξtdξ (synthesis).

Plancherel’s identity:

||f ||22 =
∫
R
|f (t)|2dt =

∫
R
|f̂ (ξ)|2dξ = ||f̂ ||22.

Remark. The trigonometric functions eξ(t) = e2πiξt do not belong
to L2(R), but the inverse Fourier transform shows that they can be
“superposed”, with the coefficients f̂ (ξ), to get f (t).

Alternative formalism. f̂ (ω) = 1
2π

∫
f (t)e−iωtdt.
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Fourier analysis Continuous Fourier transform

Time/Space R Frequency R N

derivative polynomial

dtf (t) = f ′(t) f̂ ′(ξ) = 2πiξ f̂ (ξ)

convolution product

(f ∗ g)(t) =
∫
R
f (t − s)g(s)ds f̂ ∗ g(ξ) = f̂ (ξ)ĝ(ξ)

translation/delay modulation

(τs f )(t) = f (t − s) τ̂s f (ξ) = e−2πisξ f̂ (ξ)

rescaling/dilation rescaling

fs(t) = (1/s) f (t/s) f̂s(ξ) = f̂ (sξ)

conjugate flip conjugate

f̃ (t) = f (−t) ̂̃f (ξ) = f̂ (ξ)
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Fourier analysis Remarks

Left: Graph of the Mexican hat, (1− t2)e−t2/2 (it is the negative of
the second derivative of e−t2/2). Center and Right: same, but
rescaled by 3 and 1/2, respectively.

Gauss’ function

e−t2/2

and its derivative.
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Fourier analysis Remarks

It can be seen that if an operator A : L2(R) → L2(R) commutes with
translations (A(τs f ) = τs(Af )), then there is a function
Â(ξ) ∈ L2(R), called the symbol of A, such that

Âf (ξ) = Â(ξ)f̂ (ξ).

For example, d̂t(ξ) = 2πiξ.

Smoothness and decay at infinity. Since f̂ ′(ξ) = 2πiξ f̂ (ξ), by
Plancherel’s formula we have, provided f ′ ∈ L2(R),∫

4π2ξ2|f̂ (ξ)|2dξ = ||f ′||22 <∞.

This shows, because of the factor ξ2 in the integrand, that |f̂ (ξ)|2
must decay fast enough to insure that the integral is finite.

In general, it can be seen that the smoother the function f (t), the
faster has to be the decay of |f̂ (ξ)| (see [4, Theorem 2.5]).
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Fourier analysis Generalizations

For each n ∈ Z, the function en(t) = e2πint is a homomorphism
en : R → U1 (the group U1 = S1 is also denoted T by many authors
writing on hamonic analysis). And the set {en}n∈Z is a multiplicative
group isomorphic to Z (n ↔ en).

Similarly, for each ξ ∈ R, the function eξ(t) = e2πiξt is a
homomorphism eξ : R → U1 And the set {eξ}ξ∈R is a multiplicative
group isomorphic to R (ξ ↔ eξ).

There is a similar formalism for Zd and Rd . In the latter case, for
example, analysis and synthesis of a function f ∈ L2(Rd) is given by:

f̂ (ξ) =
∫
Rd f (t)e−2πiξ·tdt

and (inverse Fourier transform)

f (t) =
∫
Rd f̂ (ξ)e

2πiξtdξ.

Plancherel: ||f ||22 =
∫
Rd |f (t)|2dt =

∫
Rd |f̂ (ξ)|2dξ = ||f̂ ||22.
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Fourier analysis Discrete Fourier transform

https://www.math.ucla.edu/ tao/preprints/fourier.pdf (Tao)
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Wavelets Definitions

A wavelet is a function ψ ∈ L2(R) such that the functions

ψj ,k(t) = 2j/2ψ(2jt − k), j , k ∈ Z

for an orthonomal basis of L2(R).

Orthogonal wavelet transform

Wf (j , k) = ⟨f , ψj ,k⟩ =
∫
R
f (t)ψj ,k(t)dt

Wavelet synthesis

For any f ∈ L2(R),

f =
∑

j ,k⟨f , ψj ,k⟩ψj ,k .

In the sequel we will further assume that
∫
ψdt = 0 and ||ψ|| = 1.
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Wavelets Definitions

If ψ is a wavelet, for u, s ∈ R, s > 0, define

ψs,u(t) =
1√
s
ψ( t−u

s
)

The factor 1/
√
s insures that ||ψs,u|| = 1.
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Wavelets Graphics

def atom(f,s,u):

return lambda t: f((t-u)/s)/sqrt(s)

def haar(t):

if 0 <= t < 0.5: return 1

elif 0.5 <= t < 1: return -1

else: return 0

def mex(t): return (1-t**2)*exp(-t**2/2)

def morlet(t): return exp(-t**2/2)*cos(5*t)
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Wavelets Graphics

a = atom(haar,1,0)

b = atom(haar,2,2)

c = atom(haar,0.5,-2)

x = np.linspace(-2.5,4.5,500)

ya = [a(t) for t in x]

yb = [b(t) for t in x]

yc = [c(t) for t in x]

plt.plot(x,ya,’-’,color=’b’)

plt.plot(x,yb,’-’,color=’r’)

plt.plot(x,yc,’-’,color=’g’)

plt.show()
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Wavelets Graphics: Haar

ψ(t) =


1 for 0 ≤ t < 0.5

−1 for 0.5 ≤ t < 1

0 otherwise

ψ2,4(t)
ψ1/2,−2(t)
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Wavelets Graphics: Haar

a = atom(mex,1,0)

b = atom(mex,2,3)

c = atom(mex,0.5,-2)

x = np.linspace(-5,8,300)

ya = [a(t) for t in x]

yb = [b(t) for t in x]

yc = [c(t) for t in x]

plt.plot(x,ya,’-’,color=’b’)

plt.plot(x,yb,’-’,color=’r’)

plt.plot(x,yc,’-’,color=’g’)

plt.show()

S. Xambó (UPC & IMTech) AL&DNN 9/11/2021 33 / 64



Wavelets Grphics: Mexican hat

ψ(t) = (1− t2)e−t2/2

ψ2,4(t) ψ1/2,−2(t)
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Wavelets Grphics: Mexican hat

a = atom(morlet,1,0)

b = atom(morlet,2,3)

c = atom(morlet,0.5,-2)

x = np.linspace(-5,8,300)

ya = [a(t) for t in x]

yb = [b(t) for t in x]

yc = [c(t) for t in x]

plt.plot(x,ya,’-’,color=’b’)

plt.plot(x,yb,’-’,color=’r’)

plt.plot(x,yc,’-’,color=’g’)

plt.show()
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Wavelets Grphics: Mexican hat

ψ(t) = e−t
2/2 cos(5t)

ψ2,3

ψ1/2,−2
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Wavelets Calderón’s reproducing formula

Continuous wavelet transform

Wf (s, u) = ⟨f , ψs,u⟩ =
∫
R
f (t)ψs,u(t)dt

Calderon’s admissible condition

Cψ =
∫∞
0

|ψ̂(ξ)|2
ξ

dξ <∞ [∗]

Theorem (Calderón, 1966) If [∗] is sastified, then

f (t) = 1
Cψ

∫∞
0

∫∞
−∞ Wf (s, u)ψs,u(t)

duds
s2
.
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Wavelets Discretization

ψj ,k(t) = 2j/2ψ(2jt − k),

where j indicates the scale (in octaves) and k the position. For each
j , the position is sampled at 2j points.

Synthesis or reconstruction formula

f (t) =
∑

j∈Z
∑

k∈Z⟨f , ψj ,k⟩ψj ,k(t) + R(t),

where R(t) is a residual, and assuming the ψj ,k form an orthonormal
basis.
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Wavelets Scalogram

From [11, Fig. 2]: Clustering and persistence illustrated, respectively,
in Donoho and Johnstone’s [see [12]] (a) Doppler and (b) Bumps test
signals [1]. The signals lie atop the time–frequency tiling provided by
a seven-scale wavelet transform. Each tile is colored as a monotonic
function of the wavelet coefficient energy w 2

j ,k with darker tiles
indicating greater energy.
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Wavelets Spectrogram

From Wikepedia/Spectrogram.
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Multiresolution analysis Definitions and notations

A multiresolution analysis (MRA; Mallat, 1989) of L2(R) is a
sequence of closed subspaces Vj of L

2(R), j ∈ Z,

· · · ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ V3 ⊂ · · · ⊂ L2(R)

with the following properties:

(1) ∩jVj = {0} (trivial intersection) and ∪jVj is dense in L2(R).

(2) f (t) ∈ Vj ⇔ f (2t) ∈ Vj+1 (scaling property).

(3) f (t) ∈ V0 ⇔ f (t − k) ∈ V0 for any k ∈ Z (translational
invariance).

(4) There exists a scaling function φ ∈ V0 such that {φ(t − k)}k∈Z is
an orthonomal basis of V0.
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Multiresolution analysis Definitions and notations

Notation: φj ,k(t) = 2j/2φ(2jt − k) = 1
2−j/2φ(

t−2−jk
2−j )

{φj ,k}k∈Z is an orthonormal basis of Vj , for all j ∈ Z.

Pj f (t) =
∑

k⟨f , φj ,k⟩φj ,k (Pj = PVj
).

Vj+1 = Vj ⊥ Wj , hence Pj+1 = Pj + Qj , where Qj = PWj
.

Remark. ⊕jWj is dense in L2(R).
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Multiresolution analysis The MRA wavelet

Theorem (Mallat). The scaling function φ determines a wavelet ψ
such that {ψ(t − k)}k∈Z is an orthonormal basis of W0.

The functions {ψj ,k}k∈Z form an orthonormal basis of Wj , and
hence Qj f (t) =

∑
k∈Z⟨f , ψj ,k⟩ψj ,k .

The set {ψj ,k}j ,k∈Z is an orthonormal basis of L2(R).
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Multiresolution analysis The Haar MRA

Scaling function

φ(t) =

{
1 if 0 ⩽ t < 1

0 otherwise

φ(t − k) is 1 for k ⩽ t < k + 1 and 0 otherwise.

V0: closure of the span of the functions φ(t − k): functions in L2(R)
that are locally constant and with jumps at the integers.

Vj : is the closure of the span of {φj ,k}k∈Z: functions in L2(R) that
are locally constant with jumps only at the integer multiples of 2−j .
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Multiresolution analysis The Haar MRA

Haar wavelet

We have met it before: ψ(t) is 1 in 0 ⩽ t < 1/2, −1 in 1/2 ⩽ t < 1,
and 0 elswhere.

W0: closure of {ψ(t − k)}k∈Z: locally constant functions in L2(R)
with jumps only at half-integers and average 0 between any two
integers.

ψj ,k(t) =


2j for 2−jk ⩽ t < 2−j(k + 1/2)

−2j for 2−j(k + 1/2) ⩽ t < 2−j(k + 1)

0 otherwise

Wj : closure of {ψj ,k}k∈Z: locally constant functions in L2(R) with
jumps only at integer multiples 2j+1 and with average 0 between any
two integer multiples of 2j .
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Multiresolution analysis The Haar MRA

ψ(t) =


1 for 0 ≤ t < 0.5

−1 for 0.5 ≤ t < 1

0 otherwise

ψ2,4(t)
ψ1/2,−2(t)
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Multiresolution analysis The Haar MRA

The Haar functions form an orthonormal basis of L2(R).

The functions {φ, ψj ,k : j ⩽ 0, 0 ⩽ k < 2j} form a basis of
L2([0, 1]).
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Multiresolution analysis In practice

Let us look at the segment

V−n ⊂ V−n+1 ⊂ · · · ⊂ V−1 ⊂ V−1 ⊂ V0

The V−n contains the coarser representations and V0 the finer. Then

V0= V−1 ⊕W−1

= V−2 ⊕W−1 ⊕W−2

· · ·
= V−n ⊕W−1 ⊕W−2 ⊕ · · · ⊕W−n
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Multiresolution analysis In practice

From [5, Fig. 14]
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Multiresolution analysis In practice

The scaling function φ satisfies the scaling property:

φ(t) = φ(2t) + φ(2t − 1).

This implies that

φj ,k = (φj+1,2k + φj+1,2k+1)/
√
2

and so we have the recurrence relations for the approximation
coefficients

⟨f , φj ,k⟩ = 1√
2
(⟨f , φj+1,2k⟩+ ⟨f , φj+1,2k+1⟩)

The wavelet ψ satisfies the scaling relation

ψ(t) = ψ(2t)− ψ(2t − 1)

which implies a recurrent relation for the detail coefficients

⟨f , ψj ,k⟩ = 1√
2
(⟨f , φj+1,2k⟩ − ⟨f , φj+1,2k+1⟩)

S. Xambó (UPC & IMTech) AL&DNN 9/11/2021 51 / 64



Multiresolution analysis The fast wavelet transform

We have φ ∈ V0 ⊂ V1, and the φ1,k(t) =
√
2φ(2t − k) is an

orthonormal basis of V1, so we have a scaling equation

φ(t) =
∑

khkφ1,k(t) =
√
2
∑

khkφ(2t − k),

for some coefficients hk .

Similarly, there are coefficients gk such that

ψ(t) =
∑

k gkφ1,k(t) =
√
2
∑

kgkφ(2t − k).

Example. In the Haar case, the only non-zero coefficients are
h0 = h1 = 1/

√
2 and g0 = −g1 = 1/

√
2. In particular, the sums in

the scaling equations are finite.
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Multiresolution analysis The fast wavelet transform

We will assume, as we can for many wavelets, that in the scaling
equations there are only L non-zero terms.

Start with the data {aJ,k = ⟨f , φJ,k⟩}0⩽k<2J , and define
aj ,k = ⟨f , φj ,k⟩ and dj ,k = ⟨f , ψj ,k⟩ for each scale j < J . Then

aj ,k =
∑2J−j−1

n=0 h̄naj+1,n+2k ,

dj ,k =
∑2J−j−1

n=0 ḡnaj+1,n+2k .
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Multiresolution analysis The fast wavelet transform

From [5, Fig. 17].
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Multiresolution analysis The fast wavelet transform

For the relation with filter banks, see [5, §3.3.2].

For the Daubechies and similar families of wavelets, see [5, §3.4].
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Spectral Techniques on
Graphs
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Spectral techniques on graphs

[13] (bauer-2012)
[14] (dong-2017)
[15] (pan-chen-ortega-2020)
[16] (wu-pan-chen-long-zhang-philip-2021)
[17] (gama-ribeiro-bruna-2018)
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S. Xambó (UPC & IMTech) AL&DNN 9/11/2021 61 / 64



References V

[16] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A
comprehensive survey on graph neural networks,” IEEE transactions
on neural networks and learning systems, vol. 32, no. 1, 2021.

https://arxiv.org/pdf/1901.00596.pdf.

[17] F. Gama, A. Ribeiro, and J. Bruna, “Diffusion scattering transforms
on graphs,” 2018.

https://arxiv.org/pdf/1806.08829.pdf.
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Notes P3

Harmonic analysis is the study of objects (functions, measures,
etc.), defined on topological groups. The group structure en-
ters into the study by allowing the consideration of the trans-
lates of the object under study, that is, by placing the object in
a translation-invariant space. The study consists of two steps.
First: finding the “elementary components” of the object, that
is, objects of the same or similar class, which exhibit the simplest
behavior under translation and which “belong” to the object un-
der study (harmonic or spectral analysis); and
Second: finding a way in which the object can be construed as a
combination of its elementary components (harmonic or spectral
synthesis).

From the Preface of [6].
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Notes P5

In this session, we consider real and complex spaces (mainly complex spaces).

If B is finitely-generated, the notion of basis coincides with the notion introduced
in elementary linear algebra: a finite set of linearly independent vectors that span
the space. Since the results we will state turn out to be obvious in this case, we
will assume that B is not finitely generated.
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Notes P6

In the complex case, an inner-product is subject to the following properties:

(1) It is linear with respect to the first variable, and

(2) it is conjugate-symmetric, ⟨x , y⟩ = ⟨y , x⟩−, which implies that it is
conjugate-linear with respect to the second variable: ⟨x , λy⟩ = λ̄⟨x , y⟩.

In particular, ⟨x , x⟩ is real for any x , and the condition for being semi-positive
(positive) is the same as for the real case: ⟨x , x⟩ ⩾ 0 for all x (⟨x , x⟩ > 0 for all
x ̸= 0).

The formal series [∗],
∑

n⩾1⟨h, ψn⟩ψn, is called the Fourier series of h with
respect to {ψn}. So the statement says that the Fourier series of h converges in
norm to h.
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Notes P17

In the Théorie analytique de la chaleur, the synthesis and analysis was phrased in
terms of periodic functions.

The relation with C is that any f ∈ C can be prolongued to a function f̄ defined
on R that is periodic of period 1:

f̄ (x) = f (x − [x ]), where [x ] is the integer part of x , that is, the greatest
integer that does not exceed x .

In the formula f̂ (n) =
∫ 1

0
f (t)e−2πintdt, the factor e−2πint never vanishes, so for

each n all values f (t) contribute to f̂ (n). In particular, a local change in f (t)
afects all f̂ (n).
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Notes P22

f̂ ′(ξ) =
∫
R f ′(t)e−2πiξtdt

= e−2πiξt d(f (t))
= e−2πiξt f (t)]+∞

−∞ −
∫
R f (t)d(e−2πiξt)

= 2πiξ f̂ (ξ).
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