

BGSM/CRM AL&DNN

Harmonic analysis. Wavelets. Graph spectral transforms

S. Xambó

UPC & IMTech

9/11/2021

Index

Background material

Notions of Fourier analysis

Wavelets

Multiresolution analysis

The fast wavelet transform

Spectral techniques on graphs

References

- [1] (bronstein-bruna-cohen-velickovic-2021)
- [2] (hammond-et2-2019)
- [3] (hammond-et2-2011)
- [4] (mallat-2009)
- [5] (mohlenkamp-pereyra-2008)
- [6] (katznelson-2004)

N

Background material

Basis of a Banach space

Basis of a Hilbert space

Riesz basis and dual basis

Frames and dual frames

Orthogonal decompositions and projections

Let $(\mathcal{B}, \|\cdot\|)$ be a Banach space. N

A *basis* for \mathcal{B} is a sequence $u_1, \dots, u_k, \dots \in \mathcal{B}$ such that for each $x \in \mathcal{B}$ there is a *unique sequence* $\lambda_1, \dots, \lambda_k, \dots \in \mathbf{R}$ such that $x = \sum_{k \geq 1} \lambda_k u_k$, where the convergence of the series is in the sense of the norm: $x = \lim_{n \rightarrow \infty} \sum_{k=1}^n \lambda_k u_k$. Thus the vectors u_k are linearly independent and span a space (their finite linear combinations) that is dense in \mathcal{B} .

Example. Let $u_k \in \ell^p$ be $\{\delta_{k,j}\}_{j \geq 1}$ (has 1 in the position k and 0 otherwise). Then $\{u_k\}_{k \geq 1}$ is a basis of ℓ^p , for all $p \in [1, \infty)$. □

Given a basis, a subtle result is that the map $\lambda_k : \mathcal{B} \rightarrow \mathbf{R}$, $x \mapsto \lambda_k(x)$ is continuous for all k (see [7, Theorem 1.6]).

If for any $x \in \mathcal{B}$ the convergence of $\sum_{k \geq 1} \lambda_k u_k$ is unconditional, $\{u_k\}$ is said to be an *unconditional basis*.

■ Let \mathcal{H} be a Hilbert space. N

\mathcal{H} is said to be *separable* if it contains a countable dense subset.

Examples. ℓ^2 . We will also see that the (complex-valued) $L^2([0, 1])$, $L^2(\mathbb{R})$ are separable.

Orthogonal and orthonormal sets. A set $\{\psi_n\}$ in \mathcal{H} is an *orthogonal set* if $\langle \psi_n, \psi_m \rangle = 0$ whenever $n \neq m$. If in addition $\langle \psi_n, \psi_n \rangle = 1$ for all n , the set is said to be *orthonormal*.

Orthonormal basis (or *complete orthonormal systems*). An orthonormal set $\{\psi_n\}$ is a basis of \mathcal{H} if and only if

$$h = \sum_{n \geq 1} \langle h, \psi_n \rangle \psi_n, \quad [*]$$

where the convergence is with respect to the \mathcal{H} -norm. N

The point is that if $h = \sum_{n \geq 1} \lambda_n \psi_n$, then $\lambda_n = \langle f, \psi_n \rangle$. □

Lemma. A set $\{\psi_n\}_{n \geq 1}$ is an orthonormal basis if and only if $\|\psi_n\| = 1$ for all n and $\sum_{n \geq 1} |\langle h, \psi_n \rangle|^2 = \|h\|^2$ for all $h \in \mathcal{H}$.

If it is an orthonormal basis, then

$$\|h\|^2 = \left\| \sum_{n \geq 1} \langle h, \psi_n \rangle \psi_n \right\|^2 = \sum_{n \geq 1} |\langle h, \psi_n \rangle|^2.$$

Conversely, the condition for ψ_k states that

$1 = \|\psi_k\|^2 = \sum_{n \geq 1} |\langle \psi_k, \psi_n \rangle|^2 = 1 + \sum_{n \neq k} |\langle \psi_k, \psi_n \rangle|$, which implies that $\langle \psi_k, \psi_n \rangle = 0$ for all n, k .

On the other hand, the condition implies that sum $\sum_{n \geq 1} \langle h, \psi_n \rangle \psi_n$ converges (cf. [8, Th. 4.11]) and then $h - \sum_{n \geq 1} \langle h, \psi_n \rangle \psi_n$ must vanish because this difference is orthogonal to all ψ_n . □

Corollary. Orthonormal basis are unconditional basis.

Riesz basis: A basis ψ_n of \mathcal{H} for which there are constants $0 < c \leq C < \infty$ such that

$$c\|h\|^2 \leq \sum_{n \geq 1} |\langle h, \psi_n \rangle|^2 \leq C\|h\|^2. \quad [*]$$

- Riesz bases are *unconditional*.

Applying [*] to ψ_n , we get that $\|\psi_n\| \leq \sqrt{C}$:

$$\|\psi_n\|^4 = \langle \psi_n, \psi_n \rangle^2 = \sum_{k \geq 1} |\langle \psi_n, \psi_k \rangle|^2 \leq C\|\psi_n\|^2. \quad \square$$

Let $\{\psi_n\}$ be a Riesz basis. A set $\{\psi_n^*\}$ is called a *dual Riesz basis* if $\langle \psi_n, \psi_m^* \rangle = \delta_{n,m}$ (*biorthogonality*) and

$$h = \sum_n \langle h, \psi_n^* \rangle \psi_n = \sum_n \langle h, \psi_n \rangle \psi_n^*. \quad [**]$$

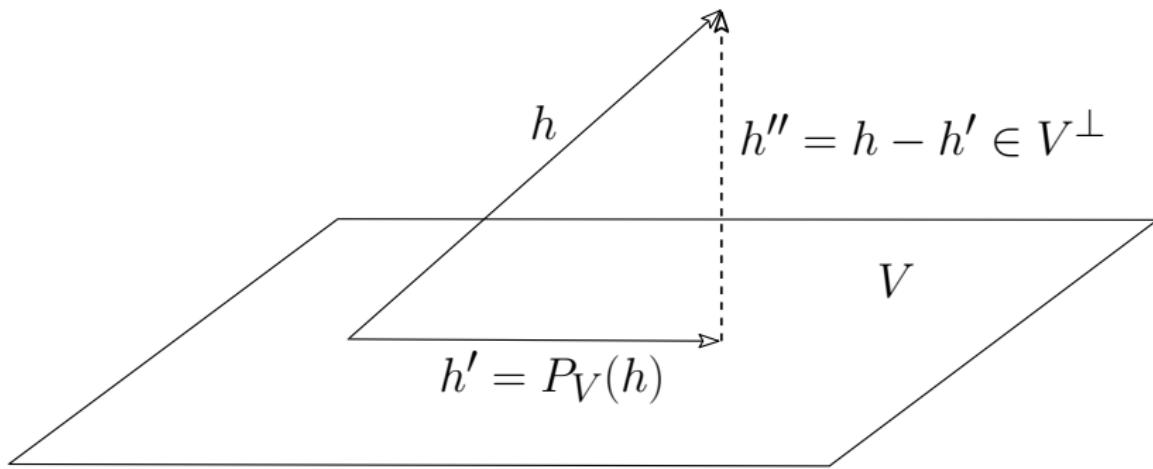
The pair $(\{\psi_n\}, \{\psi_n^*\})$ of dual Riesz basis is called a *biorthogonal basis*.

Remark. A system $\{\psi_n\}$ satisfying $[*]$ in the previous page, not necessarily a basis of \mathcal{H} , but spanning a dense subspace, is called a *frame* of \mathcal{H} .

The bound $\|\psi_n\| \leq \sqrt{C}$ seen for a Riesz basis, and its proof, is valid for frames.

A frame for which $c = C$ is said to be *tight*.

- Given a frame $\{\psi_n\}$, there is a *dual frame* $\{\psi_n^*\}$ that satisfies the relations $[**]$ in the previous page.



V is a closed subspace of \mathcal{H} . Then $\mathcal{H} = V \oplus V^\perp$. This defines a linear map $P_V : \mathcal{H} \rightarrow V$, $h \mapsto h'$, where $h = h' + h''$ is the unique decomposition of h with $h' \in V$ and $h'' \in V^\perp$.

This map is called the *orthogonal projection* of \mathcal{H} on V .

Note that $h'' = P_{V^\perp}(h)$.

- If $\{\varphi_j\}_{j \in J}$ is an orthonormal basis of V , $P_V(h) = \sum_{j \in J} \langle h, \varphi_j \rangle \varphi_j$.

Notions of Fourier analysis

Real Fourier series

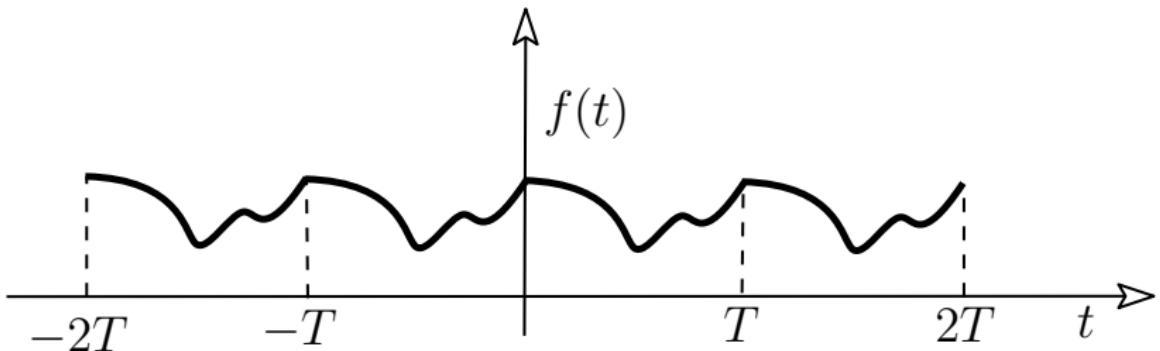
Trigonometric polynomials

Carleson's theorem

General intervals $[a, b]$

Time-frequency dictionary for Fourier series

The continuous Fourier transform



- $f(t)$ periodic function of *period T* .
- $\omega = 2\pi/T$ angular frequency.

Orthogonal relations

$$\int_0^T \cos n\omega t \cos n'\omega t = \begin{cases} 0 & \text{if } n \neq n' \\ T & \text{if } n = n' = 0 \\ T/2 & \text{if } n = n' > 0 \end{cases}$$

$$\int_0^T \sin n\omega t \sin n'\omega t = \begin{cases} 0 & \text{if } n \neq n' \\ T/2 & \text{if } n = n' > 0 \end{cases}$$

$$\int_0^T \sin n\omega t \cos n'\omega t = 0$$

Synthesis

$$f(t) = \frac{a_0}{2} + \sum_{n \geq 1} (a_n \cos n\omega t + b_n \sin n\omega t)$$

For bounded and piece-wise differentiable functions, the equality holds at points t where $f(t)$ is continuous. At jumps, the Fourier series is equal to $(f(t+) + f(t-))/2$.

Analysis

$$a_n = \frac{2}{T} \int_s^{s+T} f(t) \cos n\omega t dt \quad (n \geq 0)$$

$$b_n = \frac{2}{T} \int_s^{s+T} f(t) \sin n\omega t dt \quad (n \geq 1)$$

Even and odd functions

$$f(t) = f(-t) \Rightarrow a_n = \frac{4}{T} \int_0^{T/2} f(t) \cos n\omega t dt, \quad b_n = 0.$$

$$f(t) = -f(-t) \Rightarrow a_n = 0, \quad b_n = \frac{4}{T} \int_0^{T/2} f(t) \sin n\omega t dt.$$

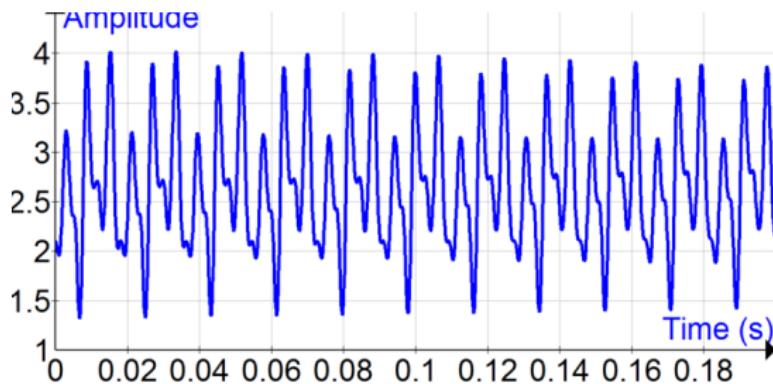
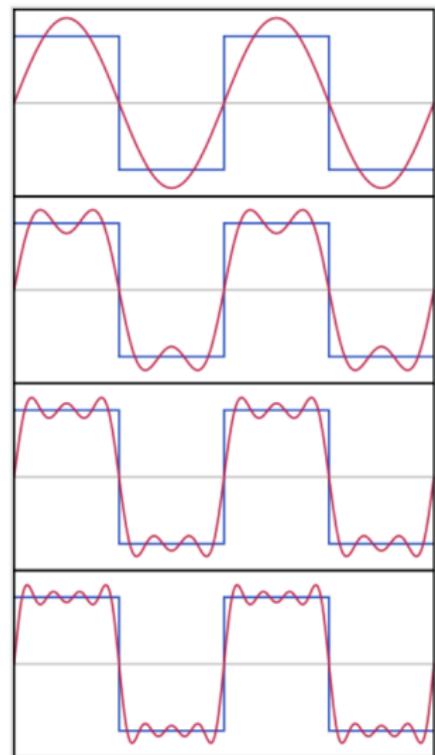
Case $T = 2\pi$

$$f(t) = \frac{a_0}{2} + \sum_{n \geq 1} (a_n \cos nt + b_n \sin nt)$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos nt dt, \quad b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin nt dt$$

Amplitude-Phase form

$$f(t) = A_0 + \sum_{n \geq 1} A_n \cos(n\omega t + \alpha_n)$$



Going round the circle. The function $[0, 1] \rightarrow \mathbf{C}$, $t \mapsto e^{2\pi i t}$, goes once round the circle $S^1 \subset \mathbf{C}$.

So the function $(e^{2\pi i t})^n = e^{2\pi i n t}$ goes n times round S^1 .

Lemma $\int_0^1 e^{2\pi i n t} dt = 0$ if $n \neq 0$, and $= 1$ for $n = 0$. Consequently, for $n, n' \in \mathbf{Z}$, $\int_0^1 e^{2\pi i n t} e^{-2\pi i n' t} dt = 0$ if $n' \neq n$, and $= 1$ if $n' = n$.

Trigonometric polynomials (TPs). These are expressions of the form $p(t) = \sum_{n \in F} a_n e^{2\pi i n t}$, where $F \subset \mathbf{Z}$ is finite and $a_n \in \mathbf{C}$. It is a *superposition of pure harmonics (synthesis)*.

Lemma. If $p(t)$ is a TP, then

$$a_n = \int_0^1 p(t) e^{-2\pi i n t} dt.$$

So $p(t)$ determines its coefficients (*analysis*). If we look at the a_n as a function $\hat{f} : \mathbf{Z} \rightarrow \mathbf{C}$, then we have

$$\hat{f}(n) = \int_0^1 f(t) e^{-2\pi i n t} dt \text{ and } f(t) = \sum_{n \in F} \hat{f}(n) e^{2\pi i n t}.$$

■ What functions can be approximated by trigonometric polynomials?

The TPs form a subalgebra \mathcal{P} of the algebra $\mathcal{C} = \mathcal{C}([0, 1])$ of continuous functions $f : [0, 1] \rightarrow \mathbb{C}$.

The algebra \mathcal{P} is closed under complex conjugation and contains de constants. Under these conditions, the [Stone-Weierstrass](#) theorem (cf. [9, Th 8.1]) applies and hence \mathcal{P} is dense in \mathcal{C} .

This means that for any $f \in \mathcal{C}$ and any $\epsilon > 0$, there is a $p \in \mathcal{P}$ such that $|f(t) - p(t)| < \epsilon$ for all $t \in [0, 1]$.

This was anticipated by J. Fourier in his *Théorie analytique de la chaleur* (1822), who claimed that *any* $f \in \mathcal{C}$ could be expressed as *trigonometric expansion*

$$f(t) = \sum_{n \in \mathbb{Z}} a_n e^{2\pi i n t} \quad (\text{synthesis}), \text{ with}$$

$$a_n = \hat{f}(n) = \int_0^1 f(t) e^{-2\pi i n t} \quad (\text{analysis}).$$

It was not until 1966 that *L. Carleson* proved, in his paper *On convergence and growth of partial sums of Fourier series*, that (for a continuous function f) the Fourier partial sums converge pointwise almost everywhere to f .

- That the convergence could not be ‘everywhere’ for all functions was known since the example, provided by du Bois-Raymond in 1873, of a continuous function whose Fourier series diverges in one point (cf. [10, Ch. 18]).

Remark. Carleson's stated and proved his theorem for functions that are in $L^2([0, 1])$ (*square-integrable functions*).

Plancherel identity. $\|f\|_2^2 = \int_0^1 |f(t)|^2 dt = \sum_{n \in \mathbb{Z}} |\hat{f}(n)|^2$.

Consequently, by the lemma on page 7, the functions

$$e_n(t) = e^{2\pi i n t}$$

form an orthonormal basis of $L^2([0, 1])$. Hence *this space is separable*.

- Let $[a, b]$, $a < b$, be an arbitrary interval, and set $L = b - a$. Then the following functions

$$\frac{1}{\sqrt{L}} e^{2\pi i nt/L}$$

form an orthonormal basis of $L^2([a, b])$.

In the case of the interval $[-\pi, \pi]$, used by many authors, the basis is (redefining the symbol e_n)

$$e_n(t) = \frac{1}{2\pi} e^{int}.$$

Time/Space [0, 1]	Frequency Z
derivative	polynomial
$f'(t)$	$\widehat{f}'(n) = 2\pi in \widehat{f}(n)$
circular convolution	product
$(f * g)(t) = \int_0^1 f(t - s)g(s)ds$	$\widehat{f * g}(n) = \widehat{f}(n)\widehat{g}(n)$
translation/shift	modulation
$(\tau_s f)(t) = f(t - s)$	$\widehat{\tau_s f}(n) = e^{-2\pi isn} \widehat{f}(n)$

If $f \in L^2(\mathbf{R})$, its *Fourier transform* is the function $\hat{f}(\xi)$, $\xi \in \mathbf{R}$, defined by

$$\hat{f}(\xi) = \int_{\mathbf{R}} f(t) e^{-2\pi i \xi t} dt \text{ (analysis).}$$

The *inverse Fourier transform* is the relation

$$f(t) = \int_{\mathbf{R}} \hat{f}(\xi) e^{2\pi i \xi t} d\xi \text{ (synthesis).}$$

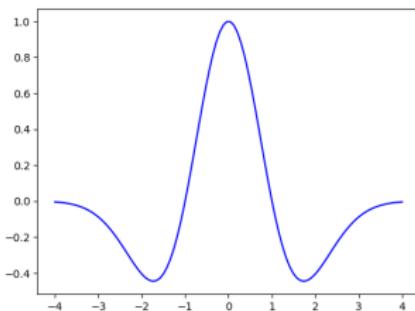
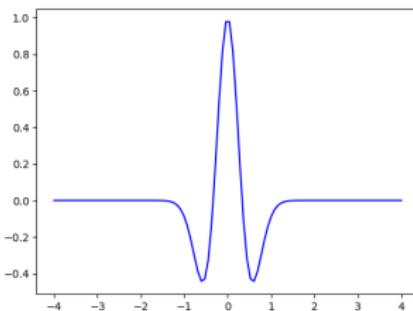
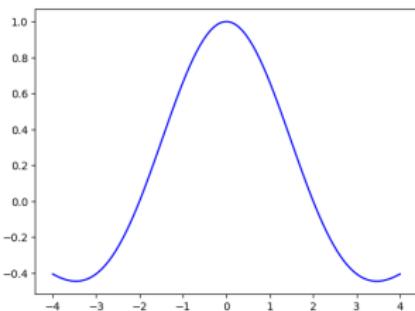
Plancherel's identity:

$$\|f\|_2^2 = \int_{\mathbf{R}} |f(t)|^2 dt = \int_{\mathbf{R}} |\hat{f}(\xi)|^2 d\xi = \|\hat{f}\|_2^2.$$

Remark. The trigonometric functions $e_\xi(t) = e^{2\pi i \xi t}$ do not belong to $L^2(\mathbf{R})$, but the inverse Fourier transform shows that they can be “superposed”, with the coefficients $\hat{f}(\xi)$, to get $f(t)$.

Alternative formalism. $\hat{f}(\omega) = \frac{1}{2\pi} \int f(t) e^{-i\omega t} dt$.

Time/Space \mathbf{R}	Frequency \mathbf{R}^N
derivative	polynomial
$d_t f(t) = f'(t)$	$\widehat{f}'(\xi) = 2\pi i \xi \widehat{f}(\xi)$
convolution	product
$(f * g)(t) = \int_{\mathbf{R}} f(t-s)g(s)ds$	$\widehat{f * g}(\xi) = \widehat{f}(\xi)\widehat{g}(\xi)$
translation/delay	modulation
$(\tau_s f)(t) = f(t-s)$	$\widehat{\tau_s f}(\xi) = e^{-2\pi i s \xi} \widehat{f}(\xi)$
rescaling/dilation	rescaling
$f_s(t) = (1/s) f(t/s)$	$\widehat{f}_s(\xi) = \widehat{f}(s\xi)$
conjugate flip	conjugate
$\tilde{f}(t) = \overline{f(-t)}$	$\widehat{\tilde{f}}(\xi) = \overline{\widehat{f}(\xi)}$

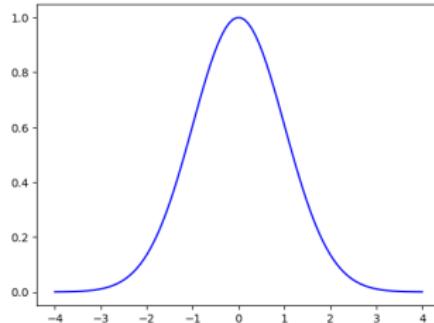
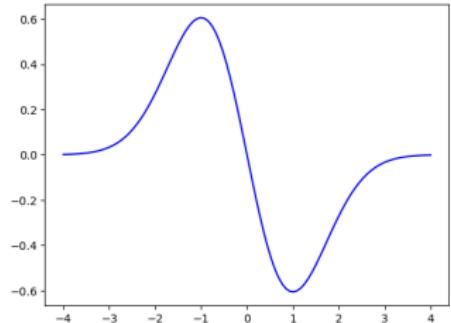


Left: Graph of the *Mexican hat*, $(1 - t^2)e^{-t^2/2}$ (it is the negative of the second derivative of $e^{-t^2/2}$). Center and Right: same, but rescaled by 3 and $1/2$, respectively.

Gauss' function

$$e^{-t^2/2}$$

and its derivative.



It can be seen that if an operator $A : L^2(\mathbf{R}) \rightarrow L^2(\mathbf{R})$ commutes with translations ($A(\tau_s f) = \tau_s(Af)$), then there is a function $\hat{A}(\xi) \in L^2(\mathbf{R})$, called the *symbol* of A , such that

$$\widehat{Af}(\xi) = \hat{A}(\xi) \hat{f}(\xi).$$

For example, $\widehat{d_t}(\xi) = 2\pi i \xi$.

Smoothness and decay at infinity. Since $\widehat{f'}(\xi) = 2\pi i \xi \hat{f}(\xi)$, by Plancherel's formula we have, provided $f' \in L^2(\mathbf{R})$,

$$\int 4\pi^2 \xi^2 |\hat{f}(\xi)|^2 d\xi = \|f'\|_2^2 < \infty.$$

This shows, because of the factor ξ^2 in the integrand, that $|\hat{f}(\xi)|^2$ must decay fast enough to insure that the integral is finite.

In general, it can be seen that *the smoother the function $f(t)$, the faster has to be the decay of $|\hat{f}(\xi)|$* (see [4, Theorem 2.5]).

For each $n \in \mathbf{Z}$, the function $e_n(t) = e^{2\pi i n t}$ is a homomorphism $e_n : \mathbf{R} \rightarrow U_1$ (the group $U_1 = S^1$ is also denoted \mathbb{T} by many authors writing on harmonic analysis). And the set $\{e_n\}_{n \in \mathbf{Z}}$ is a multiplicative group isomorphic to \mathbf{Z} ($n \leftrightarrow e_n$).

Similarly, for each $\xi \in \mathbf{R}$, the function $e_\xi(t) = e^{2\pi i \xi t}$ is a homomorphism $e_\xi : \mathbf{R} \rightarrow U_1$. And the set $\{e_\xi\}_{\xi \in \mathbf{R}}$ is a multiplicative group isomorphic to \mathbf{R} ($\xi \leftrightarrow e_\xi$).

There is a similar formalism for \mathbf{Z}^d and \mathbf{R}^d . In the latter case, for example, *analysis* and *synthesis* of a function $f \in L^2(\mathbf{R}^d)$ is given by:

$$\hat{f}(\xi) = \int_{\mathbf{R}^d} f(t) e^{-2\pi i \xi \cdot t} dt$$

and (*inverse Fourier transform*)

$$f(t) = \int_{\mathbf{R}^d} \hat{f}(\xi) e^{2\pi i \xi t} d\xi.$$

Plancherel: $\|f\|_2^2 = \int_{\mathbf{R}^d} |f(t)|^2 dt = \int_{\mathbf{R}^d} |\hat{f}(\xi)|^2 d\xi = \|\hat{f}\|_2^2$.

<https://www.math.ucla.edu/~tao/preprints/fourier.pdf> (Tao)

Wavelets

Definitions

Graphics

Calderrón's theorem

Discretization

Scalogram

Spectrogram

A *wavelet* is a function $\psi \in L^2(\mathbf{R})$ such that the functions

$$\psi_{j,k}(t) = 2^{j/2}\psi(2^j t - k), \quad j, k \in \mathbf{Z}$$

for an orthonormal basis of $L^2(\mathbf{R})$.

Orthogonal wavelet transform

$$Wf(j, k) = \langle f, \psi_{j,k} \rangle = \int_{\mathbf{R}} f(t) \psi_{j,k}(t) dt$$

Wavelet synthesis

For any $f \in L^2(\mathbf{R})$,

$$f = \sum_{j,k} \langle f, \psi_{j,k} \rangle \psi_{j,k}.$$

In the sequel we will further assume that $\int \psi dt = 0$ and $\|\psi\| = 1$.

If ψ is a wavelet, for $u, s \in \mathbf{R}$, $s > 0$, define

$$\psi_{s,u}(t) = \frac{1}{\sqrt{s}}\psi\left(\frac{t-u}{s}\right)$$

The factor $1/\sqrt{s}$ insures that $\|\psi_{s,u}\| = 1$.

```
def atom(f,s,u):  
    return lambda t: f((t-u)/s)/sqrt(s)  
  
def haar(t):  
    if 0 <= t < 0.5: return 1  
    elif 0.5 <= t < 1: return -1  
    else: return 0  
  
def mex(t): return (1-t**2)*exp(-t**2/2)  
  
def morlet(t): return exp(-t**2/2)*cos(5*t)
```

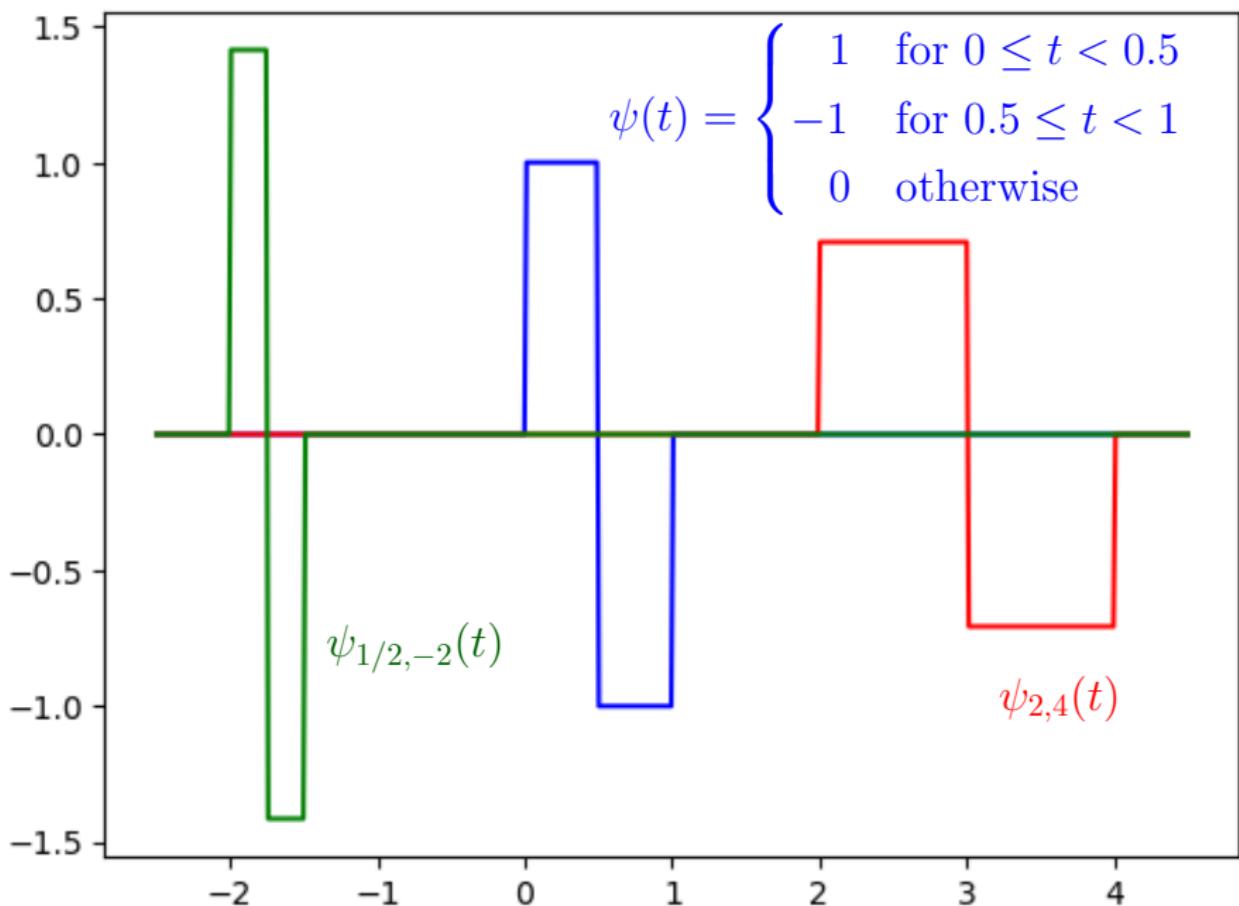
```
a = atom(haar,1,0)
b = atom(haar,2,2)
c = atom(haar,0.5,-2)

x = np.linspace(-2.5,4.5,500)

ya = [a(t) for t in x]
yb = [b(t) for t in x]
yc = [c(t) for t in x]

plt.plot(x,ya,'-',color='b')
plt.plot(x,yb,'-',color='r')
plt.plot(x,yc,'-',color='g')

plt.show()
```

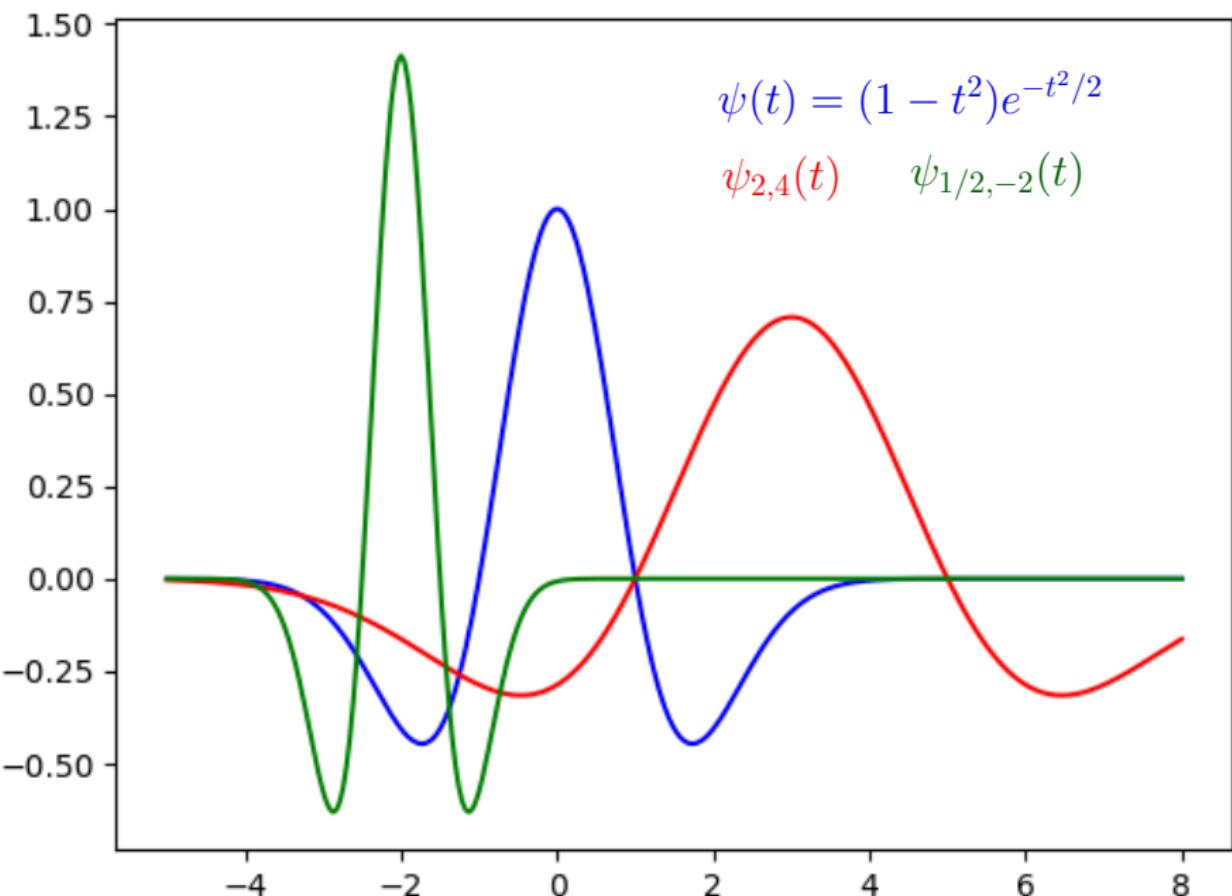


```
a = atom(mex,1,0)
b = atom(mex,2,3)
c = atom(mex,0.5,-2)

x = np.linspace(-5,8,300)

ya = [a(t) for t in x]
yb = [b(t) for t in x]
yc = [c(t) for t in x]

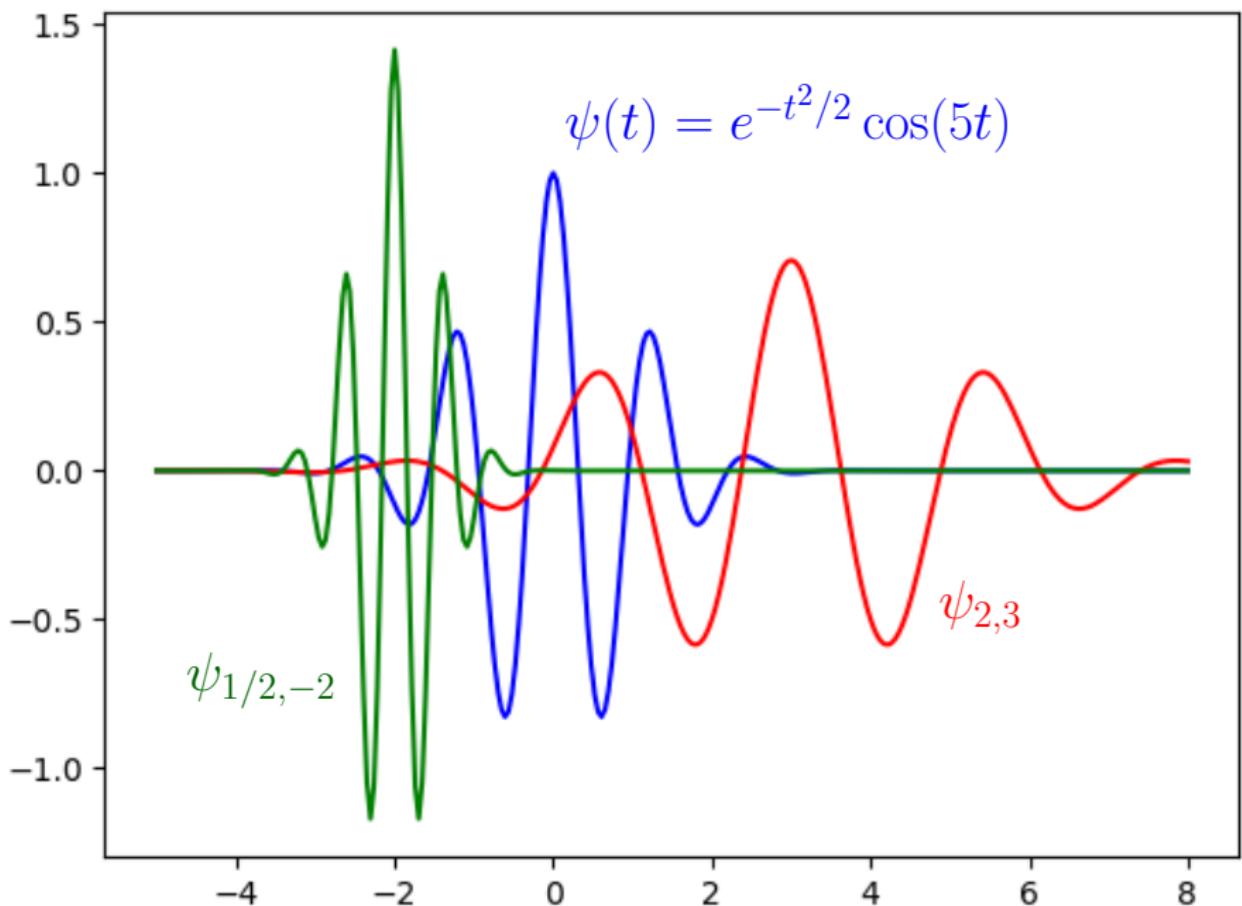
plt.plot(x,ya,'-',color='b')
plt.plot(x,yb,'-',color='r')
plt.plot(x,yc,'-',color='g')
plt.show()
```



```
a = atom(morlet,1,0)
b = atom(morlet,2,3)
c = atom(morlet,0.5,-2)

x = np.linspace(-5,8,300)
ya = [a(t) for t in x]
yb = [b(t) for t in x]
yc = [c(t) for t in x]

plt.plot(x,ya,'-',color='b')
plt.plot(x,yb,'-',color='r')
plt.plot(x,yc,'-',color='g')
plt.show()
```



Continuous wavelet transform

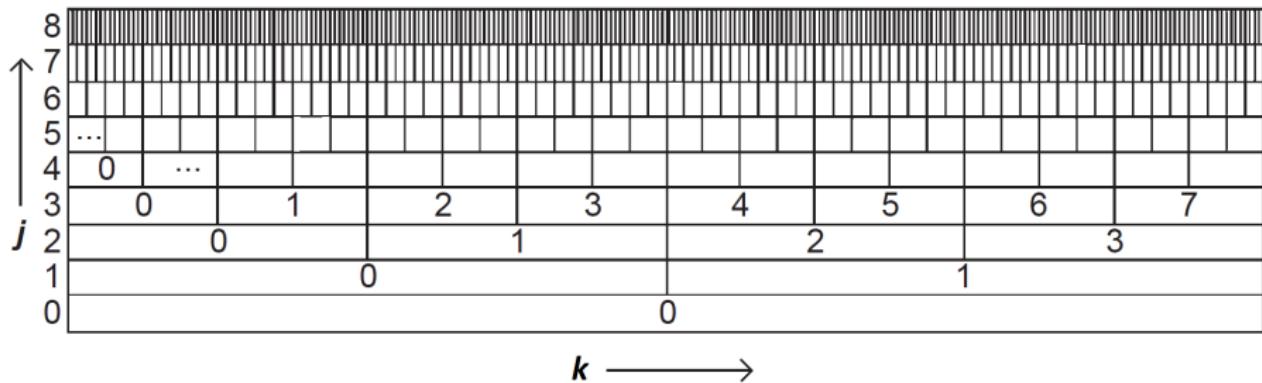
$$Wf(s, u) = \langle f, \psi_{s,u} \rangle = \int_{\mathbf{R}} f(t) \psi_{s,u}(t) dt$$

Calderon's admissible condition

$$C_\psi = \int_0^\infty \frac{|\hat{\psi}(\xi)|^2}{\xi} d\xi < \infty \quad [*]$$

Theorem (Calderón, 1966) If [*] is satisfied, then

$$f(t) = \frac{1}{C_\psi} \int_0^\infty \int_{-\infty}^\infty Wf(s, u) \psi_{s,u}(t) \frac{duds}{s^2}.$$



$$\psi_{j,k}(t) = 2^{j/2} \psi(2^j t - k),$$

where j indicates the *scale* (in *octaves*) and k the *position*. For each j , the position is sampled at 2^j points.

Synthesis or reconstruction formula

$$f(t) = \sum_{j \in \mathbb{Z}} \sum_{k \in \mathbb{Z}} \langle f, \psi_{j,k} \rangle \psi_{j,k}(t) + R(t),$$

where $R(t)$ is a *residual*, and assuming the $\psi_{j,k}$ form an orthonormal basis.

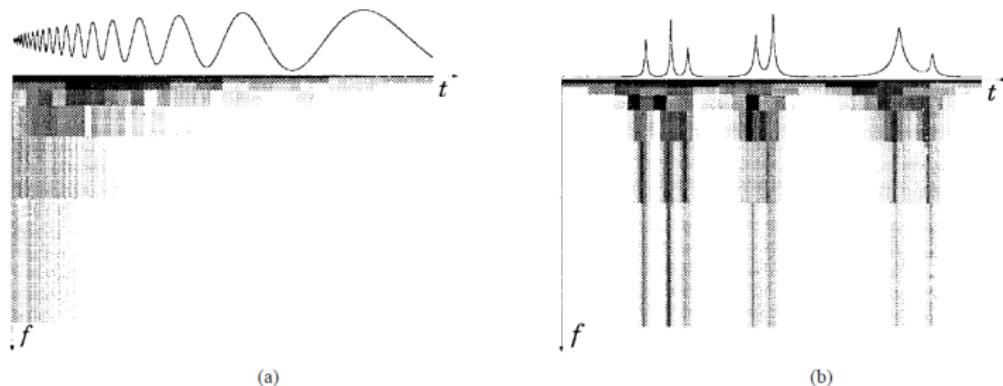
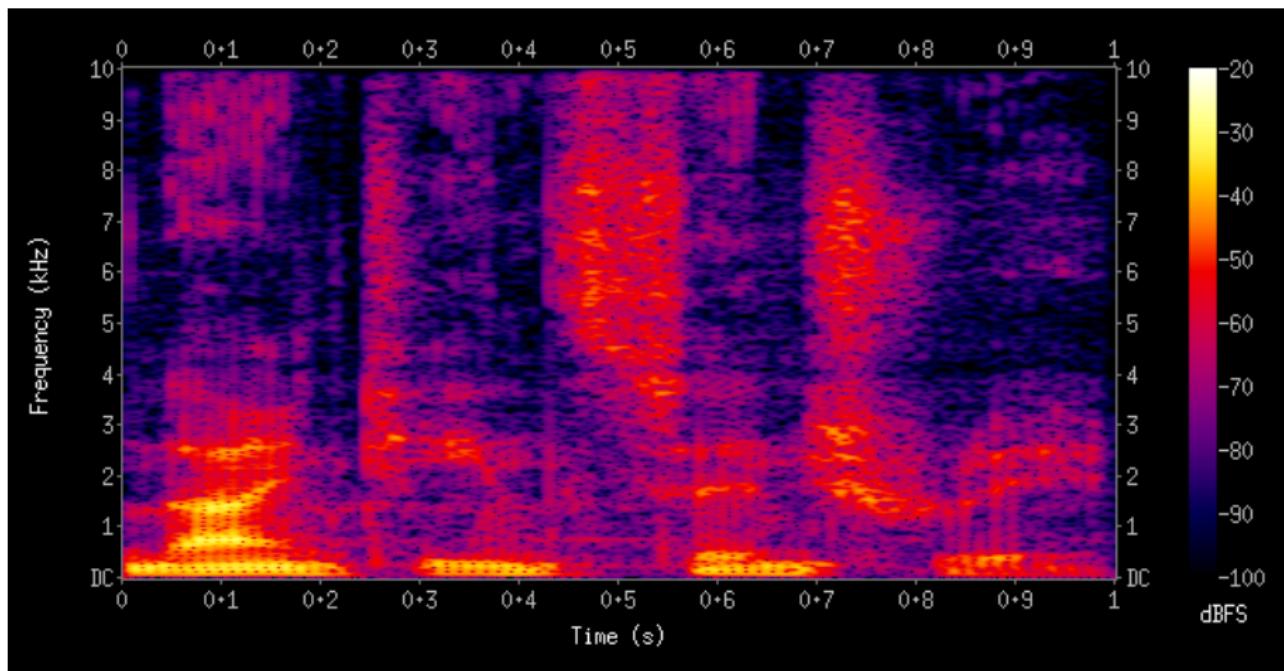


Fig. 2. Clustering and persistence illustrated, respectively, in Donoho and Johnstone's (a) Doppler and (b) Bumps test signals [1]. The signals lie atop the time-frequency tiling (Fig. 1) provided by a seven-scale wavelet transform. Each tile is colored as a monotonic function of the wavelet coefficient energy w_i^2 , with darker tiles indicating greater energy.

From [11, Fig. 2]: Clustering and persistence illustrated, respectively, in Donoho and Johnstone's [see [12]] (a) Doppler and (b) Bumps test signals [1]. The signals lie atop the time-frequency tiling provided by a seven-scale wavelet transform. Each tile is colored as a monotonic function of the wavelet coefficient energy $w_{j,k}^2$ with darker tiles indicating greater energy.



From Wikipedia/Spectrogram.

Multiresolution analysis

Definitions and notations

The MRA wavelet

The Haar MRA

In practice

The fast wavelet transform

A *multiresolution analysis* (MRA; Mallat, 1989) of $L^2(\mathbf{R})$ is a sequence of closed subspaces V_j of $L^2(\mathbf{R})$, $j \in \mathbf{Z}$,

$$\cdots \subset V_{-2} \subset V_{-1} \subset V_0 \subset V_1 \subset V_2 \subset V_3 \subset \cdots \subset L^2(\mathbf{R})$$

with the following properties:

- (1) $\cap_j V_j = \{0\}$ (*trivial intersection*) and $\cup_j V_j$ is *dense* in $L^2(\mathbf{R})$.
- (2) $f(t) \in V_j \Leftrightarrow f(2t) \in V_{j+1}$ (*scaling property*).
- (3) $f(t) \in V_0 \Leftrightarrow f(t - k) \in V_0$ for any $k \in \mathbf{Z}$ (*translational invariance*).
- (4) There exists a *scaling function* $\varphi \in V_0$ such that $\{\varphi(t - k)\}_{k \in \mathbf{Z}}$ is an orthonormal basis of V_0 .

$$\text{Notation: } \varphi_{j,k}(t) = 2^{j/2} \varphi(2^j t - k) = \frac{1}{2^{-j/2}} \varphi\left(\frac{t-2^{-j}k}{2^{-j}}\right)$$

- $\{\varphi_{j,k}\}_{k \in \mathbb{Z}}$ is an orthonormal basis of V_j , for all $j \in \mathbb{Z}$.
- $P_j f(t) = \sum_k \langle f, \varphi_{j,k} \rangle \varphi_{j,k}$ ($P_j = P_{V_j}$).
- $V_{j+1} = V_j \perp W_j$, hence $P_{j+1} = P_j + Q_j$, where $Q_j = P_{W_j}$.

Remark. $\bigoplus_j W_j$ is dense in $L^2(\mathbb{R})$.

Theorem (Mallat). The scaling function φ determines a wavelet ψ such that $\{\psi(t - k)\}_{k \in \mathbb{Z}}$ is an orthonormal basis of W_0 .

- The functions $\{\psi_{j,k}\}_{k \in \mathbb{Z}}$ form an orthonormal basis of W_j , and hence $Q_j f(t) = \sum_{k \in \mathbb{Z}} \langle f, \psi_{j,k} \rangle \psi_{j,k}$.
- The set $\{\psi_{j,k}\}_{j,k \in \mathbb{Z}}$ is an orthonormal basis of $L^2(\mathbb{R})$.

Scaling function

$$\varphi(t) = \begin{cases} 1 & \text{if } 0 \leq t < 1 \\ 0 & \text{otherwise} \end{cases}$$

- $\varphi(t - k)$ is 1 for $k \leq t < k + 1$ and 0 otherwise.

V_0 : closure of the span of the functions $\varphi(t - k)$: functions in $L^2(\mathbf{R})$ that are *locally constant and with jumps at the integers*.

V_j : is the closure of the span of $\{\varphi_{j,k}\}_{k \in \mathbf{Z}}$: functions in $L^2(\mathbf{R})$ that are locally constant with jumps only at the integer multiples of 2^{-j} .

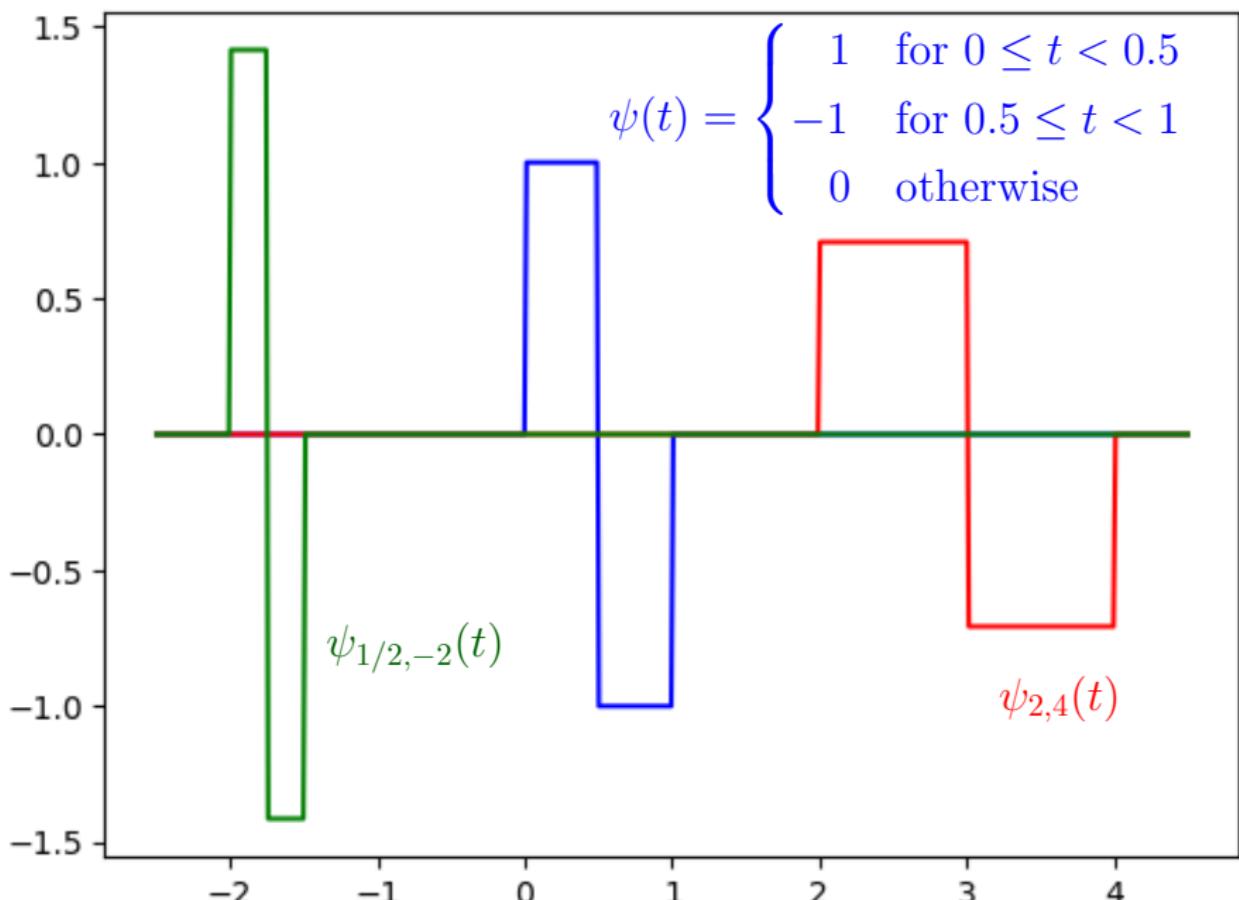
Haar wavelet

We have met it before: $\psi(t)$ is 1 in $0 \leq t < 1/2$, -1 in $1/2 \leq t < 1$, and 0 elsewhere.

W_0 : closure of $\{\psi(t - k)\}_{k \in \mathbb{Z}}$: locally constant functions in $L^2(\mathbb{R})$ with jumps only at half-integers and average 0 between any two integers.

$$\psi_{j,k}(t) = \begin{cases} 2^j & \text{for } 2^{-j}k \leq t < 2^{-j}(k+1/2) \\ -2^j & \text{for } 2^{-j}(k+1/2) \leq t < 2^{-j}(k+1) \\ 0 & \text{otherwise} \end{cases}$$

W_j : closure of $\{\psi_{j,k}\}_{k \in \mathbb{Z}}$: locally constant functions in $L^2(\mathbb{R})$ with jumps only at integer multiples 2^{j+1} and with average 0 between any two integer multiples of 2^j .



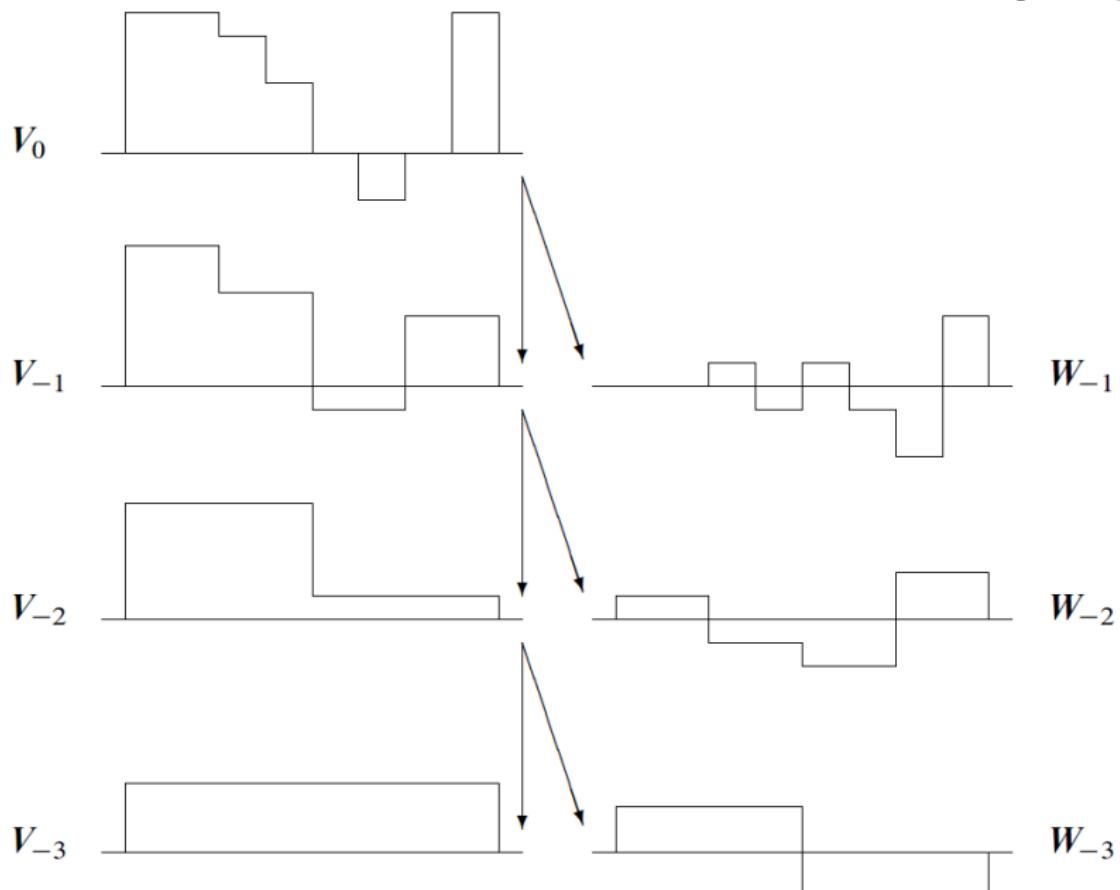
- The Haar functions form an orthonormal basis of $L^2(\mathbf{R})$.
- The functions $\{\varphi, \psi_{j,k} : j \leq 0, 0 \leq k < 2^j\}$ form a basis of $L^2([0, 1])$.

Let us look at the segment

$$V_{-n} \subset V_{-n+1} \subset \cdots \subset V_{-1} \subset V_0$$

The V_{-n} contains the coarser representations and V_0 the finer. Then

$$\begin{aligned} V_0 &= V_{-1} \oplus W_{-1} \\ &= V_{-2} \oplus W_{-1} \oplus W_{-2} \\ &\cdots \\ &= V_{-n} \oplus W_{-1} \oplus W_{-2} \oplus \cdots \oplus W_{-n} \end{aligned}$$



- The scaling function φ satisfies the *scaling property*:

$$\varphi(t) = \varphi(2t) + \varphi(2t - 1).$$

This implies that

$$\varphi_{j,k} = (\varphi_{j+1,2k} + \varphi_{j+1,2k+1})/\sqrt{2}$$

and so we have the recurrence relations for the *approximation coefficients*

$$\langle f, \varphi_{j,k} \rangle = \frac{1}{\sqrt{2}}(\langle f, \varphi_{j+1,2k} \rangle + \langle f, \varphi_{j+1,2k+1} \rangle)$$

The wavelet ψ satisfies the scaling relation

$$\psi(t) = \psi(2t) - \psi(2t - 1)$$

which implies a recurrent relation for the *detail coefficients*

$$\langle f, \psi_{j,k} \rangle = \frac{1}{\sqrt{2}}(\langle f, \varphi_{j+1,2k} \rangle - \langle f, \varphi_{j+1,2k+1} \rangle)$$

We have $\varphi \in V_0 \subset V_1$, and the $\varphi_{1,k}(t) = \sqrt{2}\varphi(2t - k)$ is an orthonormal basis of V_1 , so we have a *scaling equation*

$$\varphi(t) = \sum_k h_k \varphi_{1,k}(t) = \sqrt{2} \sum_k h_k \varphi(2t - k),$$

for some coefficients h_k .

Similarly, there are coefficients g_k such that

$$\psi(t) = \sum_k g_k \varphi_{1,k}(t) = \sqrt{2} \sum_k g_k \varphi(2t - k).$$

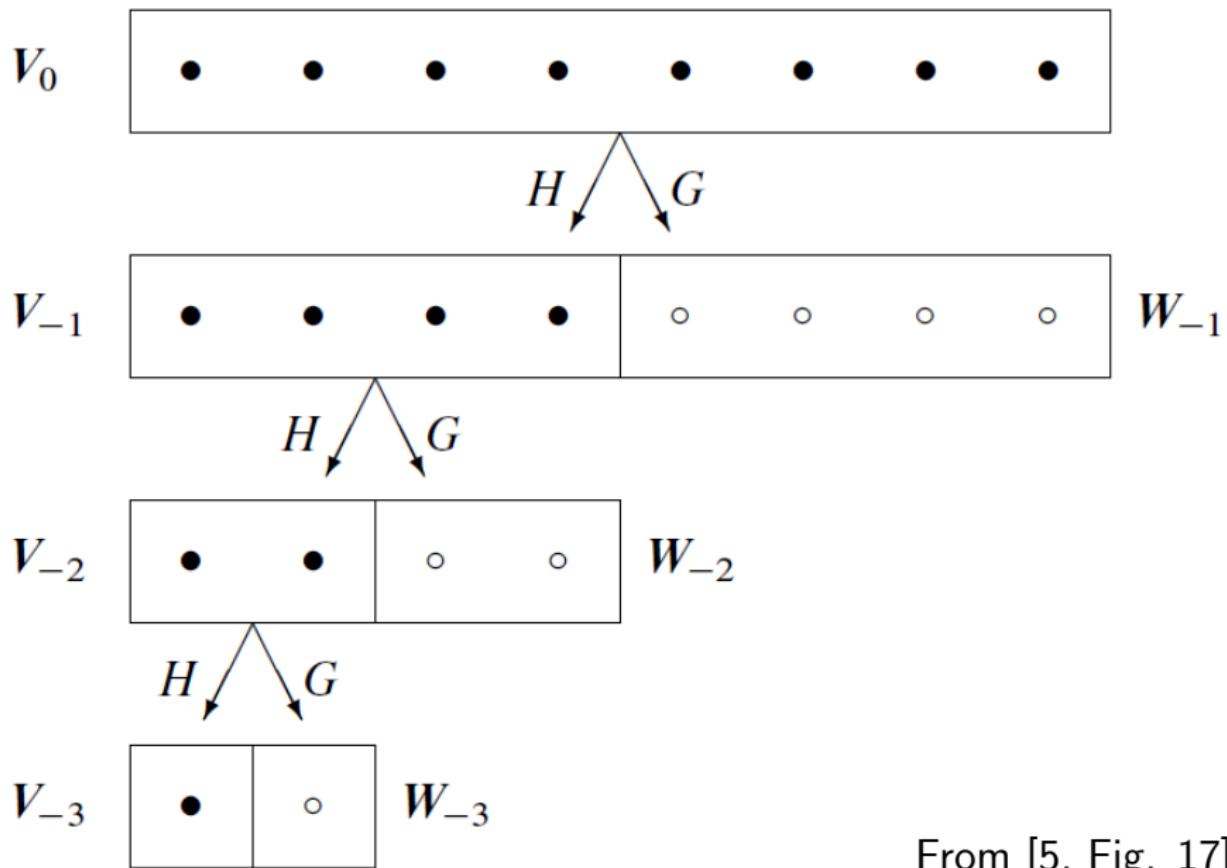
Example. In the Haar case, the only non-zero coefficients are $h_0 = h_1 = 1/\sqrt{2}$ and $g_0 = -g_1 = 1/\sqrt{2}$. In particular, the sums in the scaling equations are finite.

We will assume, as we can for many wavelets, that in the scaling equations there are only L non-zero terms.

Start with the data $\{a_{J,k} = \langle f, \varphi_{J,k} \rangle\}_{0 \leq k < 2^J}$, and define $a_{j,k} = \langle f, \varphi_{j,k} \rangle$ and $d_{j,k} = \langle f, \psi_{j,k} \rangle$ for each scale $j < J$. Then

$$a_{j,k} = \sum_{n=0}^{2^{J-j}-1} \bar{h}_n a_{j+1, n+2k},$$

$$d_{j,k} = \sum_{n=0}^{2^{J-j}-1} \bar{g}_n a_{j+1, n+2k}.$$



From [5, Fig. 17].

For the relation with *filter banks*, see [5, §3.3.2].

For the *Daubechies* and similar families of wavelets, see [5, §3.4].

Spectral Techniques on Graphs

- [13] (bauer-2012)
- [14] (dong-2017)
- [15] (pan-chen-ortega-2020)
- [16] (wu-pan-chen-long-zhang-philip-2021)
- [17] (gama-ribeiro-bruna-2018)

References I

- [1] M. M. Bronstein, J. Bruna, T. Cohen, and P. Veličković, “Geometric deep learning: Grids, groups, graphs, geodesics, and gauges,” *arXiv preprint arXiv:2104.13478*, 2021.
- [2] D. K. Hammond, P. Vandergheynst, and R. Gribonval, “The spectral graph wavelet transform: Fundamental theory and fast computation,” in *Vertex-Frequency Analysis of Graph Signals*, pp. 141–175, Springer, 2019.
- [3] D. K. Hammond, P. Vandergheynst, and R. Gribonval, “Wavelets on graphs via spectral graph theory,” *Applied and Computational Harmonic Analysis*, vol. 30, no. 2, pp. 129–150, 2011.
- [4] M. Stephane, “A wavelet tour of signal processing: The sparse way (*third edition*),” 2009.

References II

- [5] M. J. Mohlenkamp and M. C. Pereyra, *Wavelets, their friends, and what they can do for you*, vol. 8.
European Mathematical Society, 2008.
- [6] Y. Katznelson, *An introduction to harmonic analysis*.
Cambridge University Press, 2004.
Third corrected edition. The first appeared in 1968 and the second in 2002.
- [7] E. Hernández and G. Weiss, *A first course on wavelets*.
CRC press, 1996.
Foreword by Yves Meyer.

References III

- [8] N. Young, *An introduction to Hilbert space*.
Cambridge university press, 1988.
- [9] J. B. Conway, *A course in functional analysis (2nd edition)*, vol. 96 of *Graduate Texts in Mathematics*.
Springer, 2007.
- [10] T. W. Körner, *Fourier analysis*.
Cambridge university press, 1988.
- [11] M. S. Crouse, R. D. Nowak, and R. G. Baraniuk, “Wavelet-based statistical signal processing using hidden Markov models,” *IEEE Transactions on signal processing*, vol. 46, no. 4, pp. 886–902, 1998.

References IV

- [12] D. L. Donoho and I. M. Johnstone, "Adapting to unknown smoothness via wavelet shrinkage," *Journal of the American Statistical Association*, vol. 90, no. 432, pp. 1200–1224, 1995.
- [13] F. Bauer, "Normalized graph Laplacians for directed graphs," *Linear Algebra and its Applications*, vol. 436, no. 11, pp. 4193–4222, 2012.
- [14] B. Dong, "Sparse representation on graphs by tight wavelet frames and applications," *Applied and Computational Harmonic Analysis*, vol. 42, no. 3, pp. 452–479, 2017.
- [15] C. Pan, S. Chen, and A. Ortega, "Spatio-temporal graph scattering transform," 2020.

References V

- [16] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A comprehensive survey on graph neural networks,” *IEEE transactions on neural networks and learning systems*, vol. 32, no. 1, 2021.
<https://arxiv.org/pdf/1901.00596.pdf>.
- [17] F. Gama, A. Ribeiro, and J. Bruna, “Diffusion scattering transforms on graphs,” 2018.
<https://arxiv.org/pdf/1806.08829.pdf>.

Harmonic analysis is the study of *objects* (functions, measures, etc.), defined on *topological groups*. The group structure enters into the study by allowing the consideration of the *translates* of the object under study, that is, by placing the object in a translation-invariant space. The study consists of two steps. **First:** finding the “*elementary components*” of the object, that is, objects of the same or similar class, which exhibit the simplest behavior under translation and which “belong” to the object under study (*harmonic or spectral analysis*); and **Second:** finding a way in which the object can be construed as a combination of its elementary components (*harmonic or spectral synthesis*).

From the Preface of [6].

In this session, we consider real and complex spaces (mainly complex spaces).

If \mathcal{B} is finitely-generated, the notion of basis coincides with the notion introduced in elementary linear algebra: [a finite set of linearly independent vectors that span the space](#). Since the results we will state turn out to be obvious in this case, we will assume that \mathcal{B} is not finitely generated.

P

In the complex case, an inner-product is subject to the following properties:

- (1) It is *linear with respect to the first variable*, and
- (2) it is *conjugate-symmetric*, $\langle x, y \rangle = \langle y, x \rangle^-$, which implies that it is *conjugate-linear* with respect to the second variable: $\langle x, \lambda y \rangle = \bar{\lambda} \langle x, y \rangle$.

In particular, $\langle x, x \rangle$ is real for any x , and the condition for being *semi-positive* (*positive*) is the same as for the real case: $\langle x, x \rangle \geq 0$ for all x ($\langle x, x \rangle > 0$ for all $x \neq 0$).

The formal series $[*]$, $\sum_{n \geq 1} \langle h, \psi_n \rangle \psi_n$, is called the *Fourier series* of h with respect to $\{\psi_n\}$. So the statement says that the Fourier series of h converges in norm to h .

In the *Théorie analytique de la chaleur*, the synthesis and analysis was phrased in terms of *periodic functions*.

The relation with \mathcal{C} is that any $f \in \mathcal{C}$ can be prolonged to a function \bar{f} defined on \mathbf{R} that is *periodic of period 1*:

$\bar{f}(x) = f(x - [x])$, where $[x]$ is the *integer part* of x , that is, the greatest integer that does not exceed x .

In the formula $\hat{f}(n) = \int_0^1 f(t) e^{-2\pi i nt} dt$, the factor $e^{-2\pi i nt}$ never vanishes, so for each n all values $f(t)$ contribute to $\hat{f}(n)$. In particular, a local change in $f(t)$ affects all $\hat{f}(n)$.

P

$$\begin{aligned}\widehat{f}'(\xi) &= \int_{\mathbf{R}} f'(t) e^{-2\pi i \xi t} dt \\ &= e^{-2\pi i \xi t} d(f(t)) \\ &= e^{-2\pi i \xi t} f(t) \Big|_{-\infty}^{+\infty} - \int_{\mathbf{R}} f(t) d(e^{-2\pi i \xi t}) \\ &= 2\pi i \xi \widehat{f}(\xi).\end{aligned}$$

P