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Topology Basic notions

With the exception of projective spaces and Grassmannians, to be
introduced later, for our purposes we only need to consider
topological spaces X that are subsets of some R"” (which will simply
be called spaces).

The topology of any such space X C E is the topology induced by
the standard topology of E containing it, which is the topology
induced by any Euclidean norm |x| on E.

Thus an open set of X C R" is any subset U of X of the form
U=V nNX, where V is open in R". The closed sets of X are the
complements of open sets.
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Topology Basic notions

A map f : X — X' between spaces is said to be continuous if f U’
is an open set of X for any open set U’ of X’. It is immediate to
check that the composition of continuous maps is continuous. If f is
bijective and f ! is also continuous, we say that f is a
homeomorphism. This is equivalent to say that U C X is open in X
if and only if f(U) is open in X'.
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Topology Example: Stereographic projection

Z3

)

Figure 1.1: Stereographic projection of S? — {e3} to R? from e;.
Analytically, o(x) = Ax/, where x’ = x — x3e3 (the ortogonal projecton of
x to R?) and A = 1/(1 — x3). Indeed, o(x) = e3 + A\(x — e3), for some
AeER A#0,and0=e3-0(x) =1+ A(x3—1). SoA=1/(1—x3) and
e3+ Ax — e3) = (x — x3e3)/(1 — x3) This map is defined, and is
continuous, for all x € R® — {x3 = 1}.
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Topology Example: Stereographic projection

In general, consider the sphere S"~! of radius 1 in R™:
S"l={xeR"|x*=1}.
Then e, € S"! and the stereographic projection from e, is the map
0:5"1 —{e,} = R =¢t

defined by requiring that o(x) € R""! be aligned with e, and x. By
the same argument as for n = 3 we conclude that

o(x) = (x — x,e,)/(1 — x,), also defined and continuous for all

x € R"—{x, = 1}.

The expression of the inverse map 0! : R™! — St — {¢ 1 is

2 y2—1
-1 —
o (y) FEStARv Il
as this point is in the line joining e; and y and belongs to S"*:
] 4> (P -1y
oy = -1

GZ+12  (2rip
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Topology Homotopies

Two continuous maps f,g : X — X’ are said to be homotopic, and
we write f =~ g to denote it, if there is a continuous map
H: 1l x X — X', where | = [0,1] C R, such that

H(0,x) = f(x) and H(1,x) = g(x) forall x € X.
To see that this expresses the idea of continuous deformation of f
into g (or homotopy), consider the maps h, : X — X', s € |, defined
by hs(x) = H(s, x). This is a continuously varying family {h}.c, of
continuous maps h, : X — X’ and by definition we have hy = f and
h; = g. The homotopy relation =~ turns out to be an equivalence
relation in the set of continuous maps X — X’, and the homotopy

class of f, consisting of all continuous maps X — X’ that are
homotopic to f, is denoted by [f].
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Topology Poincaré’s fundamental group

Given a space X and a point xy € X, the elements of the fundamental
group of X with base point xy, which is denoted by 71 (X, xo), are the
homotopy classes [7] of loops on X with base point xp, by which we
mean continuous maps 7 : | — X such that v(0) = (1) = xo.

In this case, a homotopy H : | x | — X is required to satisfy
H(s,0) = xo = H(s, 1) for all s € I, which means that all the paths
vs(t) = H(s, t) have to be loops on X at xq (loop homotopy).

The group operation is defined by the rule[y][7'] = [y * /], where

v *~" is the loop defined by
~(2t) for 0<tK %,
I<t<1

(v +)(t) = {7’(21“ —1) for

Note that this loop travels the whole loop ~ for t € [0, %] followed by
traveling the whole loop 7/ fort € [$,1]. The composition  x 7/ is
not associative, but it becomes so at the level of homotopy classes.
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Topology Poincaré’s fundamental group

Similarly, the constant loop e : | — X, e(t) = x for all t, is not a

neutral element for the composition, but it is so for homotopy

classes, namely [e][7] = [y][e] = [7]; and the inverse loop ~*

defined by traveling v backwards, v~ [t] = 7[1 — t], satisfies

DI~ =[] = [e] although 771 £ e.

A continuous map f : X — X’ induces a group homomorphism
fom(X,x0) — m(X',x}), wherex} = f(x).

Actually if v is a loop on X at xg, then 7/ = fo~y is a loop on X’ at

Xy and the homomorphism is defined by [y] — [7/]. In particular we

see that if f is a homeomorphism, then f is an isomorphism.

S. Xambé (UPC & IMTech) AL&DNN 2/11/2021 10/ 49



Topology Poincaré’s fundamental group

If X0, x5 € X are connected by a path 0, then the map

(X, %)) = m(X,x0), [7] = [6][7][0~] is an isomorphism of
groups, with inverse the analogous map for 6 1.

In particular we see that for path-connected spaces the isomorphism
class of m1(X, xo) is the same for all points x;. In such cases, we may
simply write 71(X) to denote that isomorphism class.

This is especially apt when X has some distinguished point, and of
course also when 7;(X) ~ {0}.
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Topology Simply connected spaces

The space X is simply connected if and only if it is connected and
m1(X) is trivial.

A vector space E is simply connected, as
H(s, t) = (1 = s)¥(1)

is a loop homotopy of any given loop v on E at 0 to the constant
loop at O.

The same argument works for star-shaped sets X, which be definition
include, for some p € X, the segment px = {p + t(x — p) }o<e<1 for
all x € X.

The spheres 5" ! are simply connected for n > 3, as in this case any
loop on S"7! can be deformed to a loop that avoids e, and hence

m(S"1) = m(S" — {en}) = m(R") = {0}.
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Topology Simply connected spaces

This last argument does not work for S' (n = 2), for any loop on S*
going at least once round it cannot be deformed to avoid e;.

Actually, in this case 7;(S') ~ Z, where the isomorphism is given by
counting the number of times a loop on S! goes round S*, with the
sign + determined by the sense (counterclockwise or clockwise) of
the net number of turns.
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Topological groups

Definition and examples
Quaternions, SU, and SOs;
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Topological groups Definition and examples

Defintion. A topological group is a group G endowed with a
topology such that the group operation G x G — G and the inverse

map G — G, g+ g1, are continuous.

Examples. The group GL, of (real) invertible matrices of order n is
a topological group (general linear group). It is an open subset of
R(n) ~ R™ and the expressions for the product of two matrices and
for the inverse of a matrix show that they are continuous maps.

From this it follows that any subgroup of GL, is a topological group
with the induced topology. In particular, the following groups are
topological groups:
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Topological groups Definition and examples

= SL,, (special linear group): matrices of determinant 1.
= O, (orthogonal group of signature (r,s)):
{AcGL,|ATI, A= 1.}, I,s = diag(1,.7.,1,—1,.9., —1).

= O/, = SO, (special orthogonal group of signature (r,s): subgroup
of O, of matrices A such that det(A) = 1. Note: O, = O/, IO, _.

. O(,)’S = SO?}S: The connected component of the identity of SO, ..

= For the Euclidean signature (n,0), we simply write O, and SO,,. In
this case, SO? = SO,. So 0, = {A € GL,|ATA=1,}.
» SO, ~ Uy = {e|0 < 0 < 27} (group of unit complex numbers):

cosf) —sin 0)

ie_ - .
e —cos()+/sm0H<sin9 cos {
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Topological groups Definition and examples

= SE, s (SE, in the Euclidean case): the group of affine maps of R”,
x +— xA+ b with A € SO, . In the Euclidean case, it is the group of

rigid motions.

These maps can be identified with the matrices

<Z‘ ‘1)> (x,1) (Z‘ (1)>_(XA+b71)

The composition is morphed into the matrix product

A O\ (A 0y [ AA 0
b 1)\p 1) T A+ 1

and this shows that SE, ; is a topological group.

Note that
A0\ [ Al 0
b 1 —\=pAL 1)
S. Xambé (UPC & IMTech) AL&DNN 2/11/2021
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Topological groups  Quaternions, SU, and SO3

Consider the injective R-linear map C? — C(2),
z

(z,w)— h= ( _ Vf) and let H be its image.
w Zz

It is easy to check that H is a subring of C(2).

Let h = <m€/ _;V> (conjugate-transpose, or just conjugate of h).

Then hh = (22 + ww)l, = det(h)h. Since h € H, it follows that if
h+#0, then —*~h=h"t € H. So H is a field.

det(h)
Notation: H" = H — {0}, the multiplicative group of H.

10y . (i 0. (01 0
Letl:/2:(o 1)"‘(0 —i)’J_<—1 o)'k_(/ 0)'

These matrices satisfy Hamilton's relations: i> = j> = k? = ijk = —1;
and if z=a+ bi, w= c+di, then h=al + bi+ ¢j + dk. So H is
isomorphic to Hamilton's quaternion field.

—
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Topological groups  Quaternions, SU, and SO3

= Since i, j and k have trace 0, we have a = Str(h), which we will
denote by hg (scalar part of h).

»Set E = E3 = (i,j,k) = {h € H| hg = 0} (vector quaternions). The
vector part of his hy = h — hy.

s If B =31+ bi+ c'j+ d'k, then
(hh')o = aa + bb' + cc’ + dd’,

which is the Euclidean metric on H with orthonormal basis 1,1, j, k.
We will denote it by h- h'. In particular, denoting by |h| the norm A
of h (often called the modulus of h),

|h|> = &% + b> + 2 + d? = zz + ww = det(h),
which implies that |hh'| = |h||H|.

Restricted to Ez, the inner product x - x" is the Euclidean metric with
orthonormal basis i, j, k.
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Topological groups  Quaternions, SU, and SO3

= If v,V € E3, then w/ = —v - v/ + v x v/, where v x V' is the cross
product. In fact, if v = vii + voj + vsk and v/ = vii + vjj + v4k, a
short computation shows that
w = —v- v + (wnv — )i+ (vav] — vivg)j + (vivh — vavf)k.
= Hh.

Lemma. For all h, i € H, (hh')~
By definition, h = h”, where h is the complex-conjugate of .

Therefore (hh')~ = (hi')T (h’)77 = i'h. O

= For a given h € H, let h: H — H, h(x) = hxh (a real linear map,
which belongs to GL(H) if h # 0).

Lemma. The map H* — GL(H) is a group homomorphism.
If h, ¥ € H”, then hi'(x) = hW'x(hh')~ = hi'xh'h = h(K (x)). O
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Topological groups  Quaternions, SU, and SO3

Lemma. The map h is linear similarity of ratio |h|*.

Indeed, |h(x)[? = (hxh)(hxh)™ = hxhh%h, and the claim follows
because hh = |h|?, x% = |x|?, and hh = |h|?, so that
[h(x)|* = |x|?[h|* and hence |h(x)| = [h[?|x]. O

Lemma. If h# 0, h induces a linear similarity of E; of ratio |h|>.

It is enough to show that (hxh)y = 0 if x, = 0. This is a consequence
of the formula hy = Str(h), for all h € H:

(hxf])o = %tr(hx%) = %tr(/;hx) = %|h|2tr(x) =0. O
We have used that tr(AB) = tr(BA), for all A, B € R(n).

»SU, ={heH:|h| =1} = S*(H). In particular, SU, is simply
connected.

Corollary. If h € SU,, then h € SO3 and the map SU, — SOs,
h i+ his a group homomorphism. O
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Topological groups  Quaternions, SU, and SO3

Lemma. The kernel of the homomorphism SU, — SOz is £1.
If his in the kernel, then hv = vh for any v € E3. In particular, we

z 0 _
0 2) and zz = 1.
Now hj = jh yields that z = +1, hence h = +1. .

have hi = ih, which implies w = 0, hence h =

Theorem. The homomorphism SU, — SO3 is surjective.

Let v € S?(E) be a unit vector. Then v = —v - v = —1. Given any
0cR, h=e" =cosh + vsinh € SU,. Since v commutes with h,
h(v) = e’ ve % = v. This means that h is a rotation about the axis
(v). Now, if w € v*, then vw = v x w = —w X v = —wv, and
therefore h(w) = e?" we™? = e?*Vw = (cos 26 + vsin20)w =

w cos20 + (v x w) sin 26, which implies (take w of unit length) that h
induces a rotation of amplitude 26 in v*. In sum, h is the rotation of
amplitude 26 about the axis (v). Thus the rotation R, , of amplitude

« about v is equal to h, where h = cosa/2 + vsina/2, ]
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The differential realm

Differencials, directional derivatives and gradients
Manifolds
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Inverse function theorem
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The differential realm  Diferentials, direction derivatives and gradients

Let U C R” be an open set and f : U — R™ a map.

We say that f is differentiable at x € U if there is a linear function
/. : R" — R™ that approximates the increment

(A f)(v) = f(x+ v)— f(x), as a function of v, up to second order
terms. More formally,

f(x +v)—f(x) = Ll(v)+ o(v), where o(v)/|v| — 0 when v — 0.

If 7, exists, it is unique, is denoted by d.f, is called the differential of
f at x, and f is said to be differentiable at x.

In that case, for any v € R” the directional derivative

0,f(x) = D,f(x) = L) exists, and 0, f(x) = d.f(v). The
partial derivatives 0;f(x) = 0, f(x) exist, so also exists Vf(x), and
dyf(v) = VF(x) - v, defined as (Vfi(x) - v,..., Vi,(x)-v), where
F=(h... f).
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The differential realm Diferentials, direction derivatives and gradients

If d.f exists for any x € U, f is said to be differentiable in U. In this
case, the partial derivatives 0;f(x) exist for all x € U.

Vf(x) is also called the Jacobian matrix of f at x. lts entries are O;f;
(i € [n].J € [m]).

The function f is smooth, or of class C, if f has continuous partial
derivatives of all orders at any point of U. The vector space of
smooth functions U — R™ is denoted C*(U,R™). For m =1, it is
an algebra that we denote simply by C>(U).
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The differential realm Diferentials, direction derivatives and gradients

More generally, if Y C R”, amap f : Y — R is said to be
differentialbe (respectively smooth) if for any point y € Y there is an
open set U, C R” that contains y and a differentiable (smooth)
function ¢, : U, — R such that f(x) = ¢,(x) forall x € U, N Y.

If f:Y — R™issmooth and Z = f(Y), wesaythat f : Y — Zis a
diffeomorphism if f is bijective and ' : Z — Y is smooth.

For example, the stereographic projection o : "t — {e,} — R !is
a diffeormorphism.

Indeed, the expression o(x) = (x — x,e,)/(1 — x,) for o shows that it
makes sense, and is smooth, for any point not on the hyperplane

x, =1, while c™' : R = R, y > 2y + (y* — 1)e,)/(y* + 1), is
also smooth and its image is "' — {e,}.
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The differential realm Manifolds

A space Y is said to be a manifold of dimension d if each point
y € Y has an open neighborhood (in Y') that is diffeomorphic to an
open set of RY. The dimension d of Y is denoted by dim(Y).

Example. Any non-empty open set U of R” is a manifold and
dim U = n.

Example. What we have said about the stereographic projection
shows that S”~! is a manifold of dimension n — 1 for any n > 1.
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The differential realm Tangent space

If Y C E, is a manifold, and y € Y, a vector v € E, is said to be
tangent to Y at y if there is a smooth function 7 : (—¢,2) — Y/,
(—e,¢) C R, such that v(0) = y and %(0) = v.

We will write T,,Y to denote the set of vectors tangent to Y at y,
and we will say that it is the tangent space to Y at y.

For example, T,E, = E, for any point y € E,, because if
v(t) =y + tv, v € E,, then we have ¥(t) = v for any t.

Since GL(E,) C End(E,) is open,
TwGL(E,) = TEnd(E,) = End(E,).

In general, T,Y is a linear subspace of £, and dim 7,Y = dim Y.
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The differential realm The inverse function theorem
Let E and F be vector spaces, U a non-empty open set of £ and
f . U — F asmooth function.

Theorem. If u € U is such that d,f : E — F is injective, then there
exists an open set U' C U, u € U, such that f : U' — f(U') is a
diffeomorfism.

This means that f(U) is a manifold of dimension dim(E) near f(u).
Moreover, T,(f(U)) = (d.f)(E).

See, for example, [8, §5.3, Th. 3]. O
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The differential realm The implicit function theorem

Let E and F be vector spaces, U a non-empty open set of £ and
f . U — F asmooth function.

Theorem. Set Z = {z € U|f(z) = 0}. If z € Z is such that
d,f : E — F is surjective, then there exists an open set U’ C U,
z € U, such that Z/ = Z N U’ is a manifold of dimension

d = dim(E) — dim(F) and T,Z" = ker(d,f).

See, for example, [8, §5.3, Th. 4].
If F=R"and f =(fi,...,fy), then
Z=Z(f)=Z(H)N---NZ(fn)

and the theorem implies that Z is a manifold around a point z if
d,fi,...,d,f, are linearly independent, and in this case

T,Z = ker d,f = N ker d,f; (cf. 21-05b-Opt, classical Lagrange
multipliers).
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The differential realm The implicit function theorem

Example

Although we know, via the stereographic projection, that S" ! is a
manifold of dimension n — 1, it is instructive to prove it again using
the implicit function theorem.

Consider the function f : £, — R given by f(x) = x?, so that
Sl =Z(f -1).

To apply the theorem, let us find d,f at a point y € S" 1.
For any vector v € E,,
(d,F)(v) = Gf(y + tV)lemo = H(y + tv)*limo = 2y - v.

Now for any non-zero y, in particular for any y € S"~1, the map
E, — R, v+ 2y - v is surjective. Therefore S"~! is a manifold of

dimension n — 1 around anyone of its points y, and T,5" ! = y*.
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The differential realm The implicit function theorem

Example

Consider the group SL(E) C GL(E), which by definition can be
represented as Z(det —1).

We will see that diy det = tr, from which it follows, since
tr: End(E) — R is surjective, that SL(E) is a manifold near Id of
dimension n* — 1 (n = dim E) and

T\aSL(E) = {h € End(E) | tr(h) = 0} = Endo(E).
To prove the claim, note that for any h € End(E) we have
(dig det)(h) = £ det(ld + th)];—o = (1 + tr(th) + - - )|e—0 = tr(h).
Finally note that SL(E) is a manifold of dimension n* — 1 near any
g € SL(E) because the map L, : SL(E) — SL(E), f — gf, is a
diffeomorfism and L.(Id) = g.
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The differential realm Projective spaces

The notion of manifold given on page 27 needs a broadening that liberates
it from having to be a subset of some vector space (see, for instance, [8,
§5.1], or [9, §1.2b]).

The definition of an abstract manifold is quite natural, as it is based on
reflecting that it looks like an open set of a vector space in the
neighborhood of each of its points, with differentiable transitions between
overlapping neighborhoods.

For example, if we identify antipodal points on the sphere "1,

pr—1t — Sn=1/141}, we have a manifold in the abstract sense. Indeed,
any open set of S”~! that does not contain pairs of antipodal points is
mapped injectively into P"~!, which means that locally P"~! looks like
the manifold S"~1. Since P"~! ~ P(R"), [x] + [x/|x|] we may conclude
that the projective space P(R") is a manifold of dimension n — 1.

This can also be concluded by means of the coordinates xi, ..., x, in R™:
P" — {XJ = O} A Rnilv [Xla cee 7Xn] = [Xl/Xj:Xj—l/Xj:Xj—‘rl/Xja R 7Xn/Xj]'
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The differential realm Grassmannians

Given a k-dimensional linear subspace L of the vector space E, let
g(L) € P(AXE) be defined as [x; A - -+ A x¢], where xq, ..., x is any
basis of L. The point g(L) only depends on L, for the exterior
product of two basis are proportional.

Moreover, L — g(L) is injective, as the vectors x € L are precisely

those satisfying x A x3 A -+ A x, = 0.

Let Gre(E) € P(A“E) be the image of g. It turns out that this is a
submanifold of dimension (k + 1)(n — k) of P(AE). Such manifolds
are called Grassmann manifolds, popularly Grassmannians, [9,
§17.2b]. The projective space P(E) is the special case Gry(E).
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The differential realm Tangent bundle and vector fields

The tangent bundle TM of a manifold M of dimension n is manifold
of dimension 2n endowed with a differentiable map 7 : TM — M
with the property that 7*(x) ~ T, M.

» For an openset U C E, TU = U x E, with 7 the projection map.
s 7S ={(y,v) €SI xR":y-v =0}

The cotangent bundle has a similar meaning, but with T, (M)
replaced by T M (the dual space of T, M).

A vector field v on X assigns a tangent vector v, € T, M for any
x € M in such a way that the map M — TM, x > v,, is
differentiable.
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The differential realm Vector bundles

Vector bundles are a generalization of the tangent and cotangent
bundles. They are locally trivial families of vector spaces. The
dimension of these spaces is the rank of the vector bundle.

Example: V = {(x,v) € S" 1 x R": v € (x)}. Its rank is 1 (a line
bundle).
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Lie groups and algebras

Definition and examples
Remarks on O,
Lie algebras
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Lie groups and algebras Definition and examples

We have seen that the groups GL, and SL, are at the same time
topological groups and manifolds, and that in fact the multiplication
and inversion maps are smooth. In other words, they are Lie groups.
Their dimensions are n? and n®> — 1, respectively.

Example. O, ; is a Lie group of dimension (;’), n=r+s.

Let 7 : (—¢,¢) — O, be a differentiable path with v(0) = Id and let
B =+(0) € M, = R(n). Since ()71, sv(t) = I, ., on taking the
derivative with respect to t, at t = 0, we get BT/r.,S + 1, ;B =0. This
shows that 740, C s0,s ={BeM,:B"l,;=—I.B}.

In fact we now proceed to show that 74O, ; = so, ..

Let B € H, and consider the map 7 : so, s — GL,, defined by
7(t) = e'B. As we will see in a moment, we actually have
7(t) € O,s, with v(0) = Id, and clearly %(0) = B, so B € T,4O, ..

S. Xambé (UPC & IMTech) AL&DNN 2/11/2021 38/49



Lie groups and algebras Definition and examples

Let us check that v(t) € O, for all t.

Using that (B")*I, . = I, ;(—1)*B¥, which follows from
BTl, s = —I,<B by induction on k, we infer that the claim holds:

(etB)T/r’SetB — /r,seftBetB — /rs-

)

That O, is a manifold of dimension (7) is a nice application of the
inverse function theorem.

Consider the map exp : so, s — O, 5, B — eB. Then dyexp is a linear
map from Tyso, s = 50,5 to 740, s = s0,,, and this map is the
identity: dyexp(B) = (Dgexp)(0) = (de®®/dt)|,—o = B.

It follows that exp induces a diffeomorphism of an open neighborhood
of 0 in 50,5 and an open neighborhood of Id in O, ; and this implies
that O, ; is a manifold, hence a Lie group, of dimension (})
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Lie groups and algebras Remarks on O, s

(1) For any (r,s), 0,5 = O/, L0O,,, O, =SO,5 and O, = aSO,

for any given a € Ons (as o we can take the orthogonal reflection m,
with respect to a non-isotropic vector u: m,(x) = x if x € u* and

my(u) = —u).

(2) If (r,s) = (n,0) (Euclidean case) or (r,s) = (0, n)
(anti-Euclidean case), then SO, , is connected and hence O, ; has
two connected components.

(3) If r;s > 1, then SO, . = SO0 LI m,mg SO,S, where u, il are any
non-isotropic vectors of oposite 5|gnatures (v?7? < 0). It follows that
in this case O, ; has 4 connected components.

(4) Example. Oy is the general Lorentz group, O7 3 = SOy 3 is the

proper Lorentz group, and SOY 13 i1 the orthochronous or restricted
Lorentz group (proper Lorentz transformations that preserve the time
orientation).
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Lie groups and algebras Lie algebras

Let G be any of the Lie groups considered so far, and write [i¢(G) to
denote its tangent space at the identity element of G. More
specifically, we have:
lie(GL(E)) = End(E)
lie(SL(E)) = Endo(E) (the traceless endomorphisms of E)
lie(O, ) = lie(SO, ) = [ie(SOﬁs) =50,
In all cases, lie(G) is closed under the commutator bracket
([A, Al = AA"— A'A) and hence it is a Lie algebra. This claim is clear
for lie(GL(E)). The case of lie(SL(E)) is an immediate consequence

of the fact that tr([A, B]) = tr(AB) — tr(BA) = 0. The case of s0,
is checked with the following computation, where B, C € so, .:

[B,C]"l,s=(C"BT =B C"),;=-C"1,.B+B"l,C
=1,sCB —1,BC = —1I, 4B, C].
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Lie groups and algebras Lie algebras

We have seen that SE, . (in particular SE,) is a topological group.

By inspecting its multiplication and inverse maps, page 17, we see
that it is a Lie group.

Its Lie algebra se, ; (tangent space at Id) can be determined as for
SO, s, and the result is that it is the Lia algebra of matrices of the
form

<B O), B €so,,, veR".
v 0 ’

The argument with the exponential can be adapted to this case and
the outcome is that SE, . is a Lie group of dimension (”;1),
n=r-+s.

This agrees with the intuition that the degres of freedom a rigid
motion are n for the translation plus the degrees of freedom
(dimension) of a rotation.
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Appendix

Two properties of the stereographic projection o
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Appendix  Sections of S”~! by hyperplanes

Lemma. The section S’ of the hyperplane I : v - x =0 (u € R”
unitary, § € R, ) with the unit sphere S""! is empty if § > 1, the
point u if 0 = 1 and the sphere with center at du and radius

p=V1-086ifd<1

The plane [T cuts the line {\u},cg at ou. For any x € §’, we have
1=x%=(x—0u)®+ (du)® = 5. Hence the intersection is empty
unless § < 1. For § = 1, the only solution is x = v (and [ is the
tangent hyperplane to S"! at u). If § < 1, then any x in the
intersection satisfies, writing p = |x — du|, 1 = p? + 2, which shows
that S’ is the sphere in I1 with center Ju and radius p. O

Note: for § = 0, the section S" 2 has radius 1, the greatest possible
(equatorial spheres).
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Appendix o mapsany S"2 C S""ltoan S""2 c R"!

Let S"2 C S"! be the section with the hyperplane [1: u-x = 6,
u € R" a unit vector and § € R,

The y = o(x) € o(5"2) iff and only if x = ZH}(/{% belongs to I,
namely,
20u-y)+c(y?—1)=68(y>+1),
where ¢ = u - e, (the cosine of the angle 1. e,).
Letting i7 be the orthogonal projection of u to R" 1, it is equivalent to
(0—c)y?—2(a-y)+d+c=0.

The condition 6 = ¢ means that [1 passes through e,, and in this
case 0(S5"7?) is the hyperplane i -y = § of R""2, that is TN R""2.
This conclusion clearly matches the geometric intuition of the case.

If § # c, then o(S5"2) is the R™"! sphere with center v/ and radius
p', where v/ = @/(5 — ¢) and p'> = "> — (6 4 ¢) /(6 — ).
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Appendix o is conformal (preserves angles)

Figure 9.1: Let N, P € S?, P # N. Let t; and t; be lines tangent to S? at
P. The planes M; = [N, t;] (i = 1,2) cut S? along the circles C; that pass
through N and P and which touch t; at P. If we let t/ denote the
tangents to the C; at N, then Zt{t) = Zt;t>. Notice that t/ is the
intersection of M; with the tangent plane to S? at N. This implies that
Ltity = Zt]'t), where t! is the tangent to o(C;) at o(P).
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Appendix o is conformal (preserves angles)
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