

Lecture 6: Gradient Dynamics of Shallow Neural Networks

From lazy to mean-field regime.

- Lecture Objectives:
 - highlight transition from linear to non-linear learning
 - limitations of linear models
 - Mean-field description for shallow neural networks, beyond the linearised regime

Lazy Dynamics [Chitvat, Oyallon, Bach, '19]

- Let $\phi(\theta)$ be a differentiable mapping $\Theta \xrightarrow{\phi} \mathcal{F}$
 θ_0 : initial point of the learning algorithm
Parameter space function space.
- Linearised Tangent Model at initialisation:
 $\bar{\phi}(\theta) = \phi(\theta_0) + D\phi(\theta_0) \cdot (\theta - \theta_0)$
fixed family of features

$$\hookrightarrow [\bar{\phi}(\theta)(x) = \phi(\theta_0; x) + \sum_j (\theta_j - (\theta_0)_j) \cdot \nabla_{\theta_j} \phi(\theta_0; x)]$$

→ observe that $\bar{\phi}$ is linear (or affine) w.r.t. θ
(but generally non-linear w.r.t. x !)

- Q: When is gradient descent learning under these two models $(\phi, \bar{\phi})$ similar?

- Let $E(\theta) = L(\phi(\theta))$; e.g. $E(\theta) = \|\phi(\theta) - \mathcal{S}^*\|^2$
and assume θ_0 s.t. $E(\theta_0) > 0$.

- Consider a gradient step: $\theta_1 = \theta_0 - \eta \nabla E(\theta_0)$.

↳ Relative change in objective function:

$$\text{or } \frac{E(\theta_1) - E(\theta_0)}{E(\theta_0)} = \frac{1}{\nabla E(\theta_0)} \cdot \nabla E(\theta_0) \propto -\eta \|\nabla E(\theta_0)\|^2$$

$$\Delta E = \frac{\|E(\theta) - E(\theta_0)\|}{\|E(\theta_0)\|} \approx \frac{\|V(\theta_0), \theta_1 - \theta_0\|}{\|E(\theta_0)\|} = \frac{\|V(\theta_0)\|}{\|E(\theta_0)\|}$$

↳ Relative change in tangent model: 1st order Taylor $|f(a) - f(b)| \leq \frac{\sup\{f'(t)\} |a-b|}{2}$

$$\Delta(D\phi) = \frac{\|D\phi(\theta_1) - D\phi(\theta_0)\|}{\|D\phi(\theta_0)\|} \leq \frac{\eta \|D^2\phi(\theta_0)\| \|DE(\theta_0)\|}{\|D\phi(\theta_0)\|}$$

→ we say that a differentiable model operates in the "lazy" regime

when $\Delta(D\phi) \ll \Delta(E)$ ie tangent model evolves much slower than the loss.

→ If we consider $L(f) = \|f - f^*\|^2$, then we verify that

(*) is equivalent to

$$\frac{\|\phi(\theta) - f^*\|}{\|D\phi(\theta)\|} \ll 1$$

$K_\phi(\theta)$: relative scale of ϕ at θ

Theorem [COB, Thm 2.3 (Simplified)]: Assume $\phi, D\phi$ are both Lipschitz in a neighborhood of θ_0 . Let

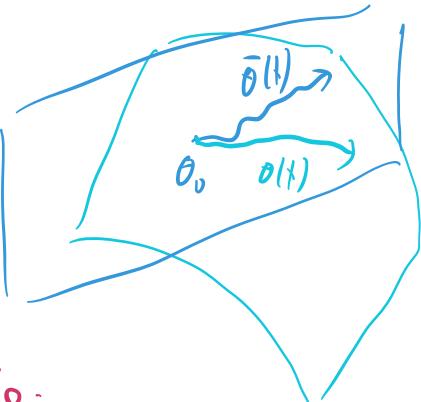
$\theta(t)$: the (non-linear) gradient flow that solves $\dot{\theta}(t) = -\nabla L(\phi(\theta(t)))$

$\bar{\theta}(t)$: the linearized gradient flow that solves $\dot{\bar{\theta}}(t) = -\nabla L(\bar{\phi}(\bar{\theta}(t)))$

Then $\exists C_\phi$ such that for $t \in C_\phi$ it holds

$$\frac{\|\phi(\theta(t)) - \bar{\phi}(\bar{\theta}(t))\|}{\|\phi(\theta_0) - f^*\|} \lesssim \frac{t^2}{C_\phi} K_\phi(\theta_0)$$

relative scale



Remark: Here we present a finite-time result, but under further assumptions, it can be extended to infinite-time.

Q: When does lazy regime happen?

↳ Scaled Model: $\phi_\alpha(\theta) = \alpha \cdot \phi(\alpha)$

$$K_{\phi_\alpha}(\theta_0) = \frac{1}{2} \underbrace{\|\alpha \phi(\theta_0) - f^*\|}_{\text{centering}} \cdot \frac{\|D\phi(\theta_0)\|}{\|D\phi(\theta_0)\|^2}$$

when $\phi(\theta_0) = 0$ (centering condition).

then we have $K_{\phi_\alpha}(\theta_0) = \frac{K_\phi(\theta_0)}{\alpha} \rightarrow 0 \text{ as } \alpha \rightarrow \infty$.

$$\|\phi(\theta) - f^*\| \cdot \frac{\|D^2\phi(\theta)\|}{\|D\phi(\theta)\|^2}$$

↳ Homogeneous Model: $\phi(\lambda \theta) = \lambda^r \phi(\theta) \forall \theta, \lambda > 0$.

Same as before $K_\phi(\lambda \theta_0) = \frac{1}{\lambda^r} K_\phi(\theta_0)$ (for centered init).

↳ Single hidden-layer NN: $\phi_m(\theta) = \underbrace{\alpha(m)}_{\text{centering}} \cdot \sum_{j=1}^m g(\theta_j), \theta_j \sim \bar{\mu} \text{ iid.}$

(ex, $g(\theta; x) = c \cdot \text{ReLU}(\langle x, a \rangle + b)$)

with $\mathbb{E}_{\bar{\mu}} g(\theta) = 0$, and Dg is Lipschitz.

We want: $K_m = \mathbb{E}_{\bar{\mu}} [K_{\phi_m}(\theta)]$.

↳ $\mathbb{E} \|\phi_m(\theta)\|^2 = \underbrace{m \alpha(m)^2 \mathbb{E} \|g(\theta)\|^2}_{\text{(since } \theta_j \text{ are iid)}}$

↳ $D\phi_m(\theta) = \underbrace{\alpha(m)}_{\text{centering}} [Dg(\theta_1), \dots, Dg(\theta_m)]$

$$\frac{D\phi_m(\theta) \cdot D\phi_m(\theta)^T}{m \cdot \underbrace{\alpha(m)^2}_{\text{centering}}} = \frac{1}{m} \sum_{j=1}^m [Dg(\theta_j) \cdot Dg(\theta_j)^T]$$

$$\xrightarrow{m \rightarrow \infty} \mathbb{E} \left[\mathbb{E} \left[\cdot \mid \mathcal{D} \right] \right] \quad (\text{Law of Large Numbers})$$

$$\Rightarrow \mathbb{E} \left[\mathbb{E} \left[\|\mathcal{D} \phi_m(\theta)\|^2 \mid \mathcal{D} \right] \right] = \mathbb{E} \left[\mathbb{E} \left[\|\mathcal{D} \phi_m(\theta) \cdot \mathcal{D} \phi_m(\theta)^\top\| \mid \mathcal{D} \right] \right]$$

$$\approx m \cdot \alpha(m)^2 \mathbb{E} \left[\mathbb{E} \left[\|\mathcal{D} g(\theta)\|^2 \mid \mathcal{D} \right] \right]$$

$$\hookrightarrow \|\mathcal{D}^2 \phi_m(\theta)\| = \sup_{\substack{\|u\| \leq 1 \\ u \in \mathbb{R}^d}} \alpha(m) \sum_{j=1}^m u_j^\top \mathcal{D}^2 g(\theta_j) u_j$$

$$\leq \alpha(m) \sup_{\theta_i} \|\mathcal{D}^2 g(\theta_i)\| \stackrel{*}{\leq} \alpha(m) \cdot \text{Lip}(Dg)$$

$$\sup_x \|\nabla f(x)\| \leq \text{Lip}(f).$$

$$\hookrightarrow \text{From triangle ineq: } \|\phi_m(\theta) - f^*\| \leq \|f^*\| + \|\phi_m(\theta)\|$$

We put everything together:

$$K_m \leq \left(C_1 + \sqrt{m} \cdot \alpha(m) \cdot C_2 \right) \cdot \frac{\alpha(m) \cdot C_3}{m \cdot \alpha(m)^2 \cdot C_4}$$

$$K_m \in \underbrace{\frac{\tilde{C}_1}{\sqrt{m}} + \frac{\tilde{C}_2}{m \cdot \alpha(m)}}_{\downarrow}$$

Conclusion: If $\frac{m \cdot \alpha(m)}{\sqrt{m}} \rightarrow \infty$ as m grows, then this model will become "lazy" in the overparametrized ($m \ll p$) regime!

In particular, NTK considers $\alpha(m) = \frac{1}{\sqrt{m}}$, so $m \alpha(m) = \sqrt{m}$!

- ⊕ It will guarantee global convergence; optimisation is easy!
- ⊖ We are in essence giving up on the non-linear nature of the model: we are learning only a linear combination

of fixed feature maps. Also

↳ No "representation" learning

↳ Associated functional space is the RKHS with kernel generated by the NTIC (features given by $\nabla \phi(\theta_0)$)

↳ even a single neuron $f^*(x) = g(\theta^*; x)$ is not in the RKHS [Bach '15].

Q: What happens when $m \cdot \alpha(m) = \Theta(1)$, ie $\alpha(m) = 1/m$?

Shallow Neural Networks and Particle Interaction Systems

→ Recall our shallow model $\phi(\theta_1, \dots, \theta_m; x) = \frac{1}{m} \sum_{j=1}^m g(\theta_j; x)$

$$g(\theta; x) = c \cdot \sigma(\langle x, a \rangle + b)$$

σ (sigmoid, ReLU, etc.)

a (input weight) x (input) b (bias)

$\theta = (a; b; c) \in \mathbb{R}^d \times \mathbb{R} \times \mathbb{R} = \mathbb{R}^{d+2}$

→ Consider a least-squares regression:

$$\min_{\theta_1, \dots, \theta_m} \mathcal{L}(\vec{\theta}) = \|\phi(\vec{\theta}) - f^*\|_F^2 + \lambda \cdot V(\vec{\theta}), \quad V(\vec{\theta}) = \frac{1}{m} \sum_j \nu(\theta_j)$$

→ By developing the square, we get

$$\mathcal{L}(\vec{\theta}) = \|\underline{f^*}\|^2 - 2 \langle \underline{\phi(\vec{\theta})}, \underline{f^*} \rangle + \|\phi(\vec{\theta})\|^2 + \lambda V(\vec{\theta})$$

→ Introduce the functions

$$F: \mathcal{D} \rightarrow \mathbb{R}$$

$$\langle g, f \rangle := \mathbb{E}_x [f(x) \cdot g(x)]$$

$$\left(= \frac{1}{n} \sum_{i=1}^n f(x_i) g(x_i) \text{ empirical loss} \right)$$

$$\theta \mapsto F(\theta) = \langle g(\theta), f^* \rangle - \frac{1}{2} \lambda \cdot V(\theta)$$

$$K: \mathcal{D} \times \mathcal{D} \rightarrow \mathbb{R}$$

$$(\theta, \theta') \mapsto K(\theta, \theta') = \langle g(\theta), g(\theta') \rangle$$

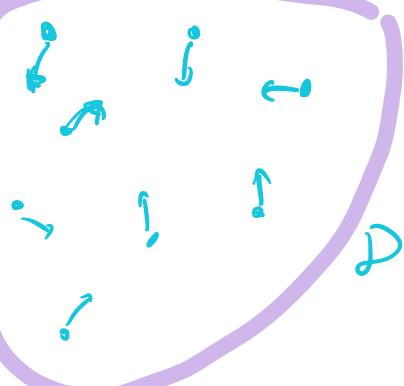
↳ observe that K is symmetric and psd operator.

→ The loss becomes

$$\begin{aligned} \mathcal{L}(\theta_1 \dots \theta_m) &= \underbrace{C - \frac{2}{m} \left\langle \sum_{j=1}^m g(\theta_j), f \right\rangle}_{\text{irrelevant.}} + \\ &\quad + \underbrace{\left\| \sum_{j=1}^m g(\theta_j) \right\|^2}_{+ \frac{1}{m} \sum_{j=1}^m v(\theta_j)} + \underbrace{\sum_{j=1}^m v(\theta_j)} \\ &= \underbrace{C - \frac{2}{m} \sum_{j=1}^m F(\theta_j)}_{\text{an energy of a system}} + \underbrace{\frac{1}{m^2} \sum_{j,j'=1}^m K(\theta_j, \theta_{j'})}_{\text{of } m \text{ interacting particles.}} \end{aligned}$$

We have written $\begin{cases} \text{an energy of a system} \\ \text{external field/force.} \end{cases}$ of m interacting particles. $\underbrace{\text{interaction kernel.}}$

analogy between neurons \leftrightarrow particles.



→ Scaled gradient flow wrt $\theta_1 \dots \theta_m$ gives the associated Lagrangian dynamics:

$$\begin{aligned} \dot{\theta}_j &= -\frac{m}{2} \nabla_{\theta_j} \mathcal{L}(\theta_1 \dots \theta_m) \quad j=1 \dots m \\ &= + \nabla F(\theta_j) - \frac{1}{m} \sum_{j'=1}^m \nabla K(\theta_j, \theta_{j'}) \end{aligned}$$

↳ This Lagrangian description is increasingly complex (defined over $\mathcal{D}^{\otimes m}$)

↳ It is exact at particle level — but the resulting optimization landscape is very complex. (if has bad local minima).

↳ Can we instead obtain a simpler collective behavior?

→ let's instead consider the Eulerian perspective

$$\vec{\theta} = (\theta_1, \dots, \theta_m) \in \mathcal{D}^{(6m)}$$

Lagrangian view

\mathcal{D} Finite-dimensional Euclidean space

$$\hat{\mu}_m = \frac{1}{m} \sum_{j=1}^m \delta_{\theta_j} \in \mathcal{P}(\mathcal{D})$$

Space of probability measures over \mathcal{D}

Eulerian view

Infinite-Dimensional Non-Euclidean

→ The model $\phi(\vec{\theta}; x) = \frac{1}{m} \sum_{j=1}^m g(\theta_j; x)$ becomes

$$\phi(\vec{\theta}; x) = \int_{\mathcal{D}} g(\theta; x) \hat{\mu}_m(d\theta)$$

non linear dependency between ϕ and $\vec{\theta}$

→ ϕ is linear w.r.t. $\hat{\mu}_m$!!

→ The energy of the system expressed in terms of μ is

$$\phi(x) = \int g(\theta, x) \mu(d\theta)$$

$$\mu = \frac{1}{2} (\mu_1 + \mu_2)$$

$$- \frac{2}{m} \sum_{j=1}^m F(\theta_j) + \frac{1}{m^2} \sum_{j,j'=1}^m K(\theta_j, \theta_{j'})$$

$$\mathcal{L}[\mu] = -2 \int F(\theta) \mu(d\theta) + \int K(\theta, \theta') \mu(d\theta) \mu(d\theta')$$

$$\phi(x) = \frac{1}{2} (\phi_1(x) + \phi_2(x))$$

$L(\mu)$ is now quadratic w.r.t. μ ; in fact it is convex w.r.t. μ (recall that K is psd).

Q: Too good to be true?

A: Not so fast: L is convex with respect to the geometry of linear mixtures.

However, gradient descent dynamics correspond to a different geometry.

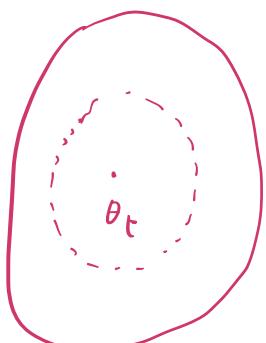
Q: What is the relationship between GD/GF and metric?

Proximal Viewpoint of GD.

The standard (Euclidean) GD step satisfies

$$\theta_{t+1} = \theta_t - \gamma \nabla f(\theta_t)$$

$$= \underset{\theta}{\operatorname{argmin}} \left\{ f(\theta_t) + \underbrace{\langle \nabla f(\theta_t), \theta - \theta_t \rangle}_{\text{linear approx of } f \text{ at } \theta_t} + \underbrace{\frac{1}{2\gamma} \|\theta - \theta_t\|_h^2}_{\text{proximity term.}} \right\}$$



- How do we measure proximity? L_2 metric is one choice, but not always the "good" choice!

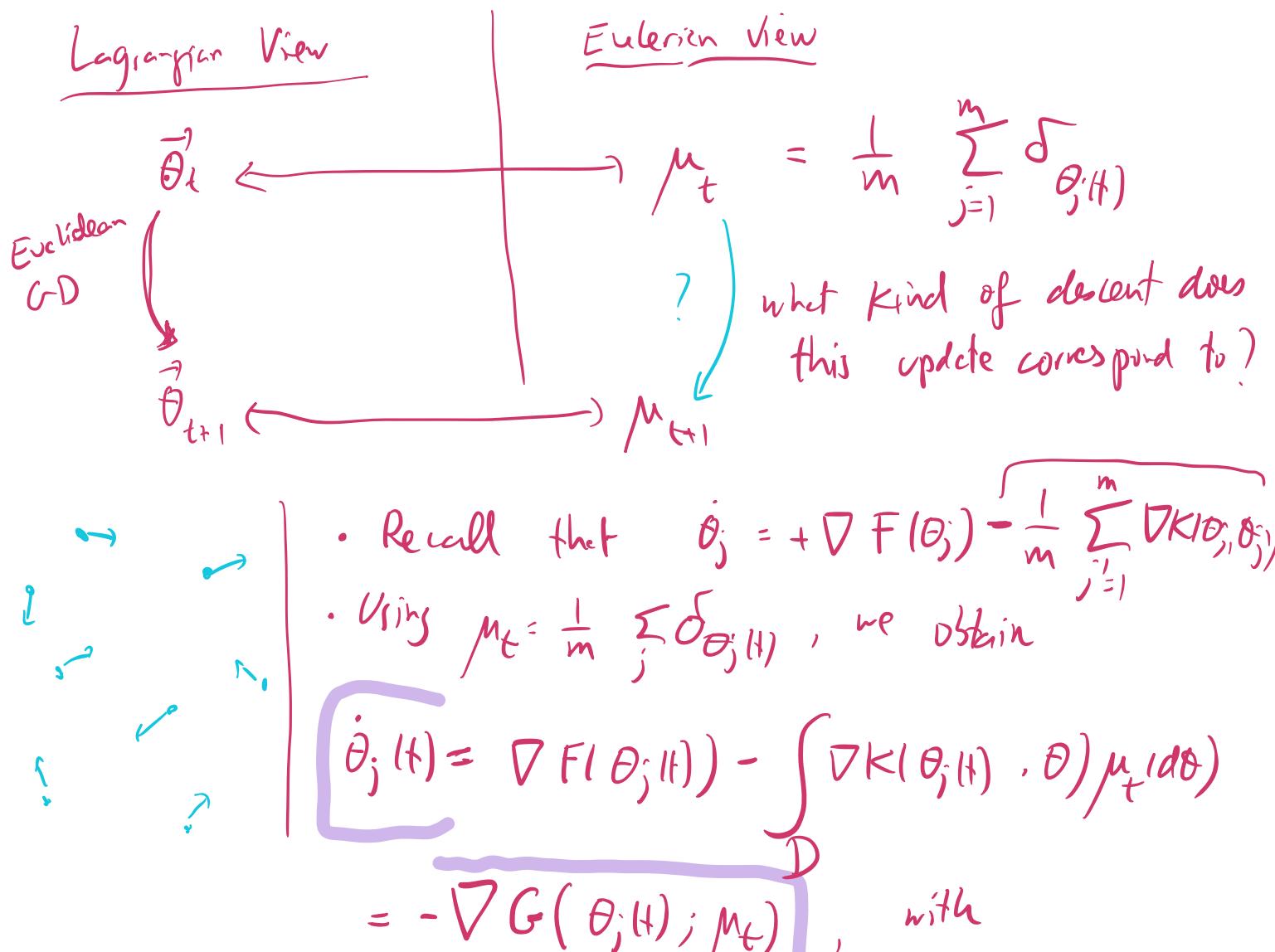
• The generalization of GD on more general metrics is generally called Mirror Descent (Nemirovski, Yudin '83).

↳ In essence, $\theta_{t+1} = \underset{\theta}{\operatorname{argmin}} \left\{ f(\theta) + \frac{1}{2\gamma} \underbrace{D(\theta; \theta_t)}_{\substack{\text{Divergence} \\ \text{(Bregman) function}}} \right\}$

↳ Measures proximity

between θ_t and θ .

Back at our measure space:



$$G(\theta; \mu) = -F(\theta) + \int_D K(\theta, \theta') \mu(d\theta')$$

$\theta \in D$

In physics, G is called the instantaneous potential of the system. Its gradient $\nabla G(\theta; \mu_t)$ defines a velocity field over D that any particle "feels".

→ Consider now a test function (smooth) $\chi: D \rightarrow \mathbb{R}$ and



$$\int_D \chi(\theta) \mu_t(d\theta) = \frac{1}{m} \sum_{j=1}^m \chi(\theta_j(t))$$

D

↳ Time derivatives.

$$\begin{aligned} \int_D \chi(\theta) \dot{\mu}_t(d\theta) &= \frac{1}{m} \sum_{j=1}^m \nabla \chi(\theta_j(t)) \cdot \dot{\theta}_j(t) \\ &= -\frac{1}{m} \sum_{j=1}^m \langle \nabla \chi(\theta_j(t)), \nabla G(\theta_j(t); \mu_t) \rangle \\ &= - \int_D \langle \nabla \chi(\theta), \nabla G(\theta; \mu_t) \rangle \mu_t(d\theta) \end{aligned}$$

D

→ This is known as a continuity/ transport equation.
(Mass is conserved).

→ The associated PDE is written as

$$\partial_t \mu_t = \operatorname{div}(\nabla G(\theta; \mu_t) \cdot \mu_t) \quad \boxed{\text{Liouville equation}}.$$

Q: Do these dynamics correspond also to a gradient flow?

A: Yes! The proximal interpretation is given in terms of
a so-called Wasserstein Gradient Flow:

$$\mu_{t+1} = \operatorname{argmin}_{\mu \in \mathcal{P}(D)} \left\{ \mathcal{L}[\mu] + \frac{1}{2\eta} W_2(\mu, \mu_t) \right\}$$

[JKO Scheme].

Jordan, Klein, Otto

Remarks : → This description is exact.

→ Add noise to the gradient updates (GF → Langevin dyna)

translates into another PDE in the space of

measures (Liouville eq \rightarrow McKean-Vlasov eq).

This connection between Wasserstein gradient flow and training of shallow NN was made by

[Chizat, Bach] [Rotskoff & Vanden-Eijnden] [Mei, Montanari, Ngai] [Sirignano & Spiliopoulos] - all in 2018..

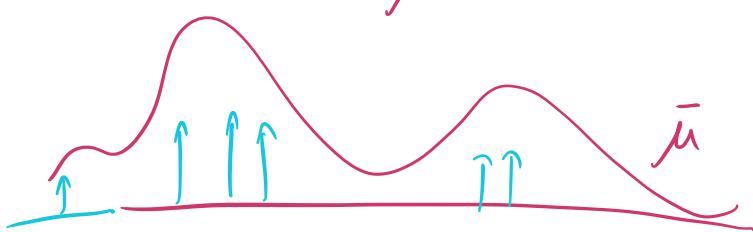
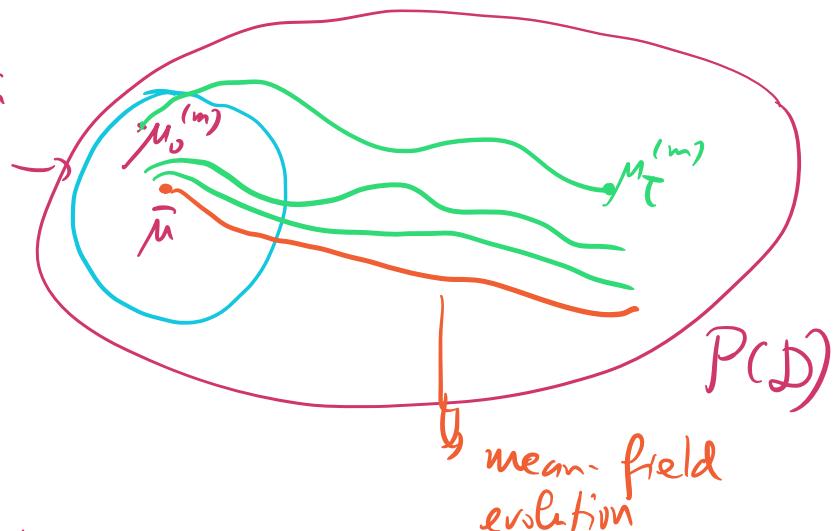
Mean-field regime

- Consider the evolution of the system as $m \rightarrow \infty$.

$\mu_t^{(m)}$: state after time t , with $\theta_j(t)$ $\sim_{\text{iid}} \bar{\mu}$

$$\mu_0^{(m)} = \frac{1}{m} \sum_{j=1}^m \delta_{\theta_j(0)}, \quad \theta_j(0) \sim \bar{\mu}$$

is the empirical measure associated with $\bar{\mu}$.



μ_t solves

$$\partial_t \mu_t = \text{div}(\nabla C(\theta; \mu_t) \mu_t)$$

with initial condition

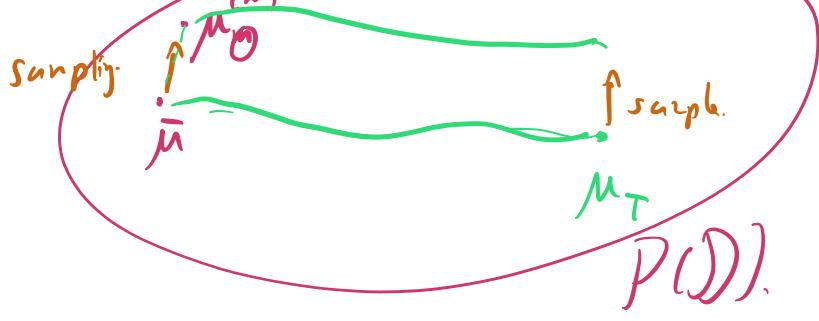
$$\mu_0 = \bar{\mu}$$

Theorem [GB, REVE, MNN, SS]

For any fixed $T > 0$, $\mu_T^{(m)}$ converges weakly to μ_T as $T \rightarrow \infty$, where μ_T solves.

In other words:

Dynamics and sampling
commute in the
limit of $m \rightarrow \infty$.



Two main questions

- (i) Under what conditions does this PDE converge to the global minimum of \mathcal{L} ? (convergence in time).
- (ii) How are the dynamics affected in terms of a.s. conv.
(convergence / fluctuations in m).

[Existing positive results for global convergence, but they are all qualitative in m and also in t (no rates!).]