

Lecture 2 : The curse of dimensionality ; Neural Networks and approximation.

[Bach '21] [Telgarski, '20]

(DLT 'Fall20).

Basic Supervised Learning Setup

Given data $\{(x_i, y_i)\}_{i=1 \dots n}$ with $x_i \in \mathcal{X}$ [high-dimension] and $y_i \in \mathcal{Y}$ labels.

estimate a mapping $f: \mathcal{X} \rightarrow \mathcal{Y}$ that

? generalises to unseen data

↑
glorified Interpolation

→ IID Assumption : data is drawn iid from a distribution ν on $\mathcal{X} \times \mathcal{Y}$.

→ Point-wise loss $l: \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R}$

$$l(y, y') = \log(1 + \exp(-y y'))$$

$$l(y, y') = \frac{1}{2} |y - y'|^2$$

Given any $f: \mathcal{X} \rightarrow \mathcal{Y}$, this defines

$$\mathcal{Y} = \mathbb{R}$$

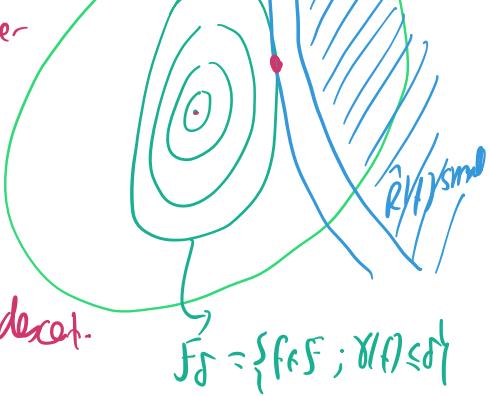
population risk $R(f) = \mathbb{E}_{\nu} [l(f(x), y)]$ $(\mathbb{E} \hat{R}(f) = R(f))$

empirical risk $\hat{R}(f) = \frac{1}{n} \sum_{i=1}^n l(f(x_i), y_i)$ ← unbiased estimator of R .

→ Hypothesis space $\mathcal{F} = \{f: \mathcal{X} \rightarrow \mathcal{Y}\}$

Assume that \mathcal{F} comes with a norm : we can assign to each $f \in \mathcal{F}$ a complexity measure $\gamma(f)$

Example : \rightarrow norms over the NN parameter weights.
 \rightarrow number of neurons
 \rightarrow number of gradient steps
for models f using gradient-descent.



→ Empirical Risk Minimization (ERM).

we search for small empirical risk using small complexity.

$$\begin{array}{ll}
 \text{(c) } \min_{\text{Constrained } R(f) \leq \delta} \hat{R}(f) & \text{(P) } \min_{\text{subject to } f \in \mathcal{F}} \hat{R}(f) + \lambda \cdot \gamma(f) \\
 & \hookrightarrow \text{Lagrange Multiplier}
 \end{array}$$

$$(I) \quad \min_{\text{interpol.}^1} \gamma(f) \quad \leftarrow (\text{situations with no noise}) \quad f(x_i) = y_i \quad i=1..n.$$

→ Basic decomposition of error / risk

Let $\hat{f} \in \mathcal{F}_S$ produced by an arbitrary algorithm \Rightarrow (only sees \mathcal{R})
 $\hat{f} = \text{some approximation of } f$

Then

$$\begin{aligned}
 R(\hat{f}) - \inf_{f \in \mathcal{F}} R(f) &= R(\hat{f}) - \inf_{f \in \mathcal{F}_{\mathcal{F}}} R(f) + \inf_{f \in \mathcal{F}} R(f) - \inf_{f \in \mathcal{F}} R(f) \\
 &= [R(\hat{f}) - \hat{R}(\hat{f})] + [\hat{R}(\hat{f}) - \inf_{f \in \mathcal{F}_{\mathcal{F}}} \hat{R}(f)] + \\
 &\quad + [\inf_{f \in \mathcal{F}_{\mathcal{F}}} \hat{R}(f) - \inf_{f \in \mathcal{F}} R(f)] + \varepsilon_{\text{app}} \\
 &\leq 2 \sup_{f \in \mathcal{F}_{\mathcal{F}}} |\hat{R}(f) - R(f)| + \varepsilon_{\text{app}} + \varepsilon_{\text{opt}}.
 \end{aligned}$$

↳ $\epsilon_{\text{statistical error}}$

3 sources of error $\rightarrow \epsilon_{\text{app}} ;$ in regression $R(f) = \|f - f^*\|_2^2$

$\left\{ \begin{array}{l} \{(x_i, y_i)\}, \text{ with } y_i = f(x_i) \\ \inf_{f \in \mathcal{F}} \|f - f^*\|_V \\ \text{As } \delta \text{ increases, } \epsilon_{\text{app}} \text{ decreases.} \end{array} \right.$

→ statistical error $\sup_{f \in \mathcal{F}_\delta} |R(f) - \hat{R}(f)| \leftarrow \text{a random quantity.}$

measures uniform fluctuations over the ball $\mathcal{F}_\delta.$

Two main quantities drive this error:

$\left\{ \begin{array}{l} n : \text{the number of datapoint} \\ \delta : \text{size of } \mathcal{F}_\delta \text{ ball.} \end{array} \right.$

What is the expected behavior?

Fix f first. $(x_i, y_i) \text{ iid.}$

$$\hat{R}(f) - R(f) = \frac{1}{n} \sum_{i=1}^n [l(f(x_i), y_i) - \mathbb{E} l(f(x), y)]$$

$$\Rightarrow |\hat{R}(f) - R(f)| \sim \frac{\text{std}(l(f(x), y))}{\sqrt{n}} \quad (\text{non-asymptotic in } n)$$

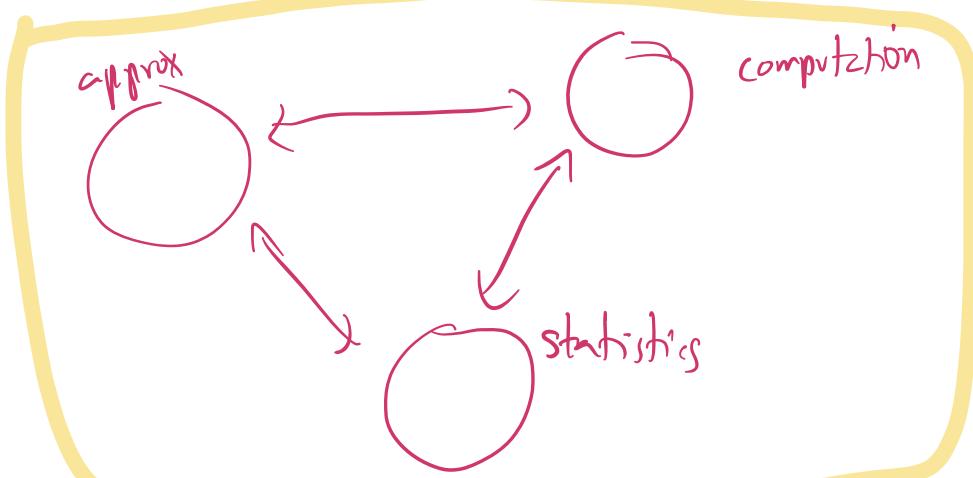
(quantified in high-prob using Chebyshev tail bound)

↳ From point-wise control to uniform control, requires some tools from concentration / empirical processes (Rademacher averages, etc.)

$$\epsilon_{\text{stat}} \sim \frac{\text{hl}(\delta, \mathcal{F})}{\sqrt{n}} \leftarrow \text{need to fight each other!}$$

↳ Optim error $\hat{R}(\hat{f}) - \inf_{f \in \mathcal{F}} \hat{R}(f)$ measures our ability to solve ERM.

↳ f_T is non-convex in most practical situations!



The curse of dimensionality How do approximation and statistical errors behave as input dimension grows?

statistics: we observe $\{(x_i, f^*(x_i))\}_{i=1 \dots n}$ $x_i \sim N(0, \mathbb{I}_d)$
 f^* unknown.

Q: How many samples are needed to estimate f^* up to accuracy ε , ie $\mathbb{E}_x |\hat{f}(x) - f^*(x)|^2 \leq \varepsilon$?
(sample complexity).

↳ suppose first f^* is linear: $f^*(x) = \langle x, \theta^* \rangle$ $\theta^* \in \mathbb{R}^d$.
 $f = \{ f: \mathbb{R}^d \rightarrow \mathbb{R} ; f(x) = \langle x, \theta \rangle \} \cong \mathbb{R}^d$

A: $n = d$ are sufficient for exact recovery (and necessary)
(solve a linear system $\langle x_i, \theta \rangle = \langle x_i, \theta^* \rangle$) $i=1 \dots d$.

Remark: $f^*(x) = \varphi(\langle x, \theta^* \rangle)$ φ is even function.
smooth.

A: $n = d+1$ sample are sufficient
and also necessary

$$\varphi(t) = |t|$$
$$= \text{cost.}$$

↳ Suppose now that f^* is only locally linear, i.e.

$$(B) \text{ Lipschitz: } |f(x) - f(x')| \leq \beta \cdot \|x - x'\|_2 \quad \leftarrow$$

$\mathcal{F} = \{ f: \mathbb{R}^d \rightarrow \mathbb{R}; f \text{ bounded} \} \cup \{ f: \mathbb{R}^d \rightarrow \mathbb{R}; f \text{ Lipschitz} \}$: a Banach space, with norm

$$\|f\|_F = \|f\|_\infty + \text{Lip}(f).$$

x_1

x_{i_0}

x_i

x_n

We consider the smoothest interpolant:

$$\hat{f} = \underset{\mathcal{F}}{\operatorname{argmin}} \left\{ \text{Lip}(f); f(x_i) = \underbrace{f^*(x_i)}_{\uparrow} \right\}$$

[ERM in interpolant form]

For any x ,

$$\begin{aligned} |\hat{f}(x) - f^*(x)| &\leq |\hat{f}(x) - \hat{f}(x_{i_0})| + |\hat{f}(x_{i_0}) - f^*(x_{i_0})| \\ &\quad + |\hat{f}(x_{i_0}) - f^*(x_{i_0})| \\ &\leq \beta \|x - x_{i_0}\|_2 \\ &\quad 2\beta \|x - x_{i_0}\|_2 \end{aligned}$$

$$\Rightarrow \mathbb{E}_{\substack{x \sim N(0, I_d) \\ \mu}} |\hat{f}(x) - f^*(x)|^2 \leq 4\beta^2 \underbrace{\mathbb{E}_{x, x_{i_0}} \|x - x_{i_0}\|_2^2}_{\sim W_2(\mu, \hat{\mu})} \sim n^{-1/d} \quad [\text{Dudley '68}]$$

training set $\hat{\mu}_n = \frac{1}{n} \sum_{i=1}^n \mathbf{x}_i$

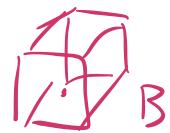
As a consequence, if $\varepsilon \sim n^{-1/d}$

[BLG '14].

$\rightarrow n \sim \varepsilon^{-d}$ we can ensure that we learn with accuracy ε . \rightarrow [cursed by dimension]

↳ Is this sample complexity also necessary?

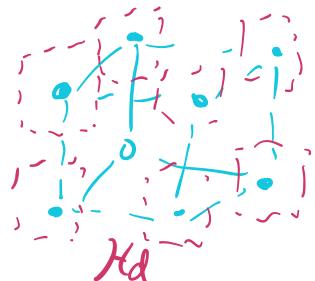
Consider the box $B = [-\frac{1}{2}, \frac{1}{2}]^d$



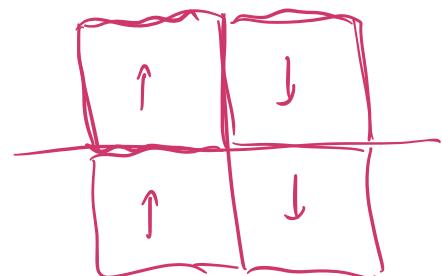
and the function $\psi: B \rightarrow \mathbb{R}$

$$\psi(x) = \text{dist}(x; \partial B) \quad \text{Exercise: } \psi \text{ is 1-Lipschitz.}$$

Consider for each $z \in [-\frac{1}{2}, \frac{1}{2}]^d$
an arbitrary sign $g(z) = \pm 1$

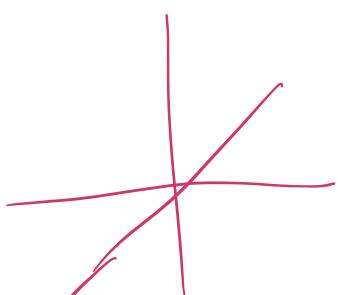


$$f^*(x) = \sum_{z \in [-1, 1]^d} g(z) \psi(x - z)$$



f^* is 1-Lipschitz and supported
in $[-1, 1]^d$.

→ Claim: if $\frac{n}{\epsilon} \ll 2^d$, then any estimator will
incur in a relative error



$$\frac{\mathbb{E}_x |\hat{f}(x) - f^*(x)|^2}{\mathbb{E}_x |f^*(x)|^2} = \Theta(1)$$

↳ To summarise:

→ linear functions (or generalized linear functions)

$n \sim d$ (easy)

→ Lipschitz functions $\rightarrow n \sim \epsilon^{-d}$ (impossible)

In between, Sobolev class:

$$W^s = \{ f: \mathbb{R}^d \rightarrow \mathbb{R} ; f \text{ has } s\text{-derivatives (}\text{bounded) in } L_p \}$$

Sample complexity $n \sim \xi^{-d+2s/s}$ [Tsibakov].

$$\tilde{d} = d/s \sim \xi^{-\tilde{d}}$$

\rightarrow unless $s = \Theta(d)$, no real chance.

Conclusion: we will need to search for alternatives.

Shallow Neural Networks and Approximation

\rightarrow Consider $\sigma: \mathbb{R} \rightarrow \mathbb{R}$ (Lipschitz) activation function

$$f_{ik}(x; \theta) = \sum_{l=1}^k \underbrace{c_l \sigma(\langle x, a_{lk} \rangle + b_{lk})}_{\text{ridge function.}} \quad x \in \mathbb{R}^d$$
$$\theta = \{a_{lk}, b_{lk}, c_l\}_{lk} \quad a_{lk}, c_l \in \mathbb{R}$$

$$b_{lk}, c_l \in \mathbb{R}$$

\rightarrow Space of functions represented with shallow

NNs is $H_\sigma = \{f_{ik}(\cdot; \theta); \theta; k \in \mathbb{N}\}$

Q: How expressive is this set?

Universal Approximation

For a given metric d defined over continuous functions,

$\forall f \in C(\mathbb{R}^d)$ and $\forall \epsilon > 0$, there exist $\hat{f} \in H_\sigma$

such that $\|f_i - f\| \leq \varepsilon$.

→ To get intuition, let us first consider a 3-layer approximation.

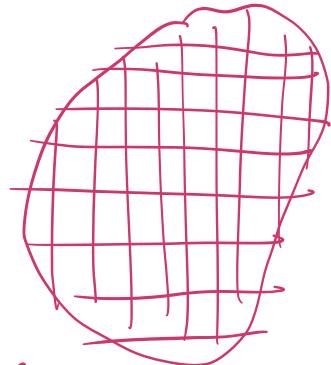
Theorem Let $g: \mathbb{R}^d \rightarrow \mathbb{R}$ continuous, $\varepsilon > 0$, $\Omega = [0, 1]^d$, and let $\delta > 0$ so that $\|x - x'\|_\infty < \delta$, $x, x' \in \Omega$, then $|g(x) - g(x')| \leq \varepsilon$. Then there exists a 3-layer ReLU network f with $\Theta(\delta^{-d})$ and $\|f - g\|_1 \leq \varepsilon$.

Proof: [Talginski '20]

Lemma: let $U \subseteq \mathbb{R}^d$, with a partition P of U into rectangles ; $P = (R_1 \dots R_N)$, each with lengths $\leq \delta$. Then \exists scalars $\alpha_1 \dots \alpha_N$ with

$$\boxed{|P| \sim \delta^{-d}} \quad \sup_{x \in U} |g(x) - h(x)| \leq \varepsilon, \text{ with } h(x) = \sum_i \alpha_i \mathbb{1}_{[R_i]}$$

(in other words, piece-wise constant approximation has small error provided pieces are sufficiently small.)



Let P the partition from above of $U = [0, 1]^d$ into rectangles $R_i = \prod_j [a_{ij}, b_{ij}]$ with $b_{ij} - a_{ij} \leq \delta$.

$$h(x) = \sum_i \alpha_i \mathbb{1}_{R_i}, \text{ so } \|g - h\|_1 \leq \varepsilon.$$

We construct a network of the form

$$f(x) = \sum_i \alpha_i g_i(x) \text{ where each } g_i \text{ is}$$

a ReLU net that approximates $\mathbb{1}_{R_i}$.

$$\begin{aligned}
 \|f - g\|_1 &\leq \overbrace{\|f - h\|_1} + \overbrace{\|h - g\|_1} \leq \varepsilon \text{ from Lemma} \\
 &= \left\| \sum_i \alpha_i (\mathbb{1}_{R_i} - g_i) \right\|_1 + \varepsilon \\
 &\leq \sum_i |\alpha_i| \|\mathbb{1}_{R_i} - g_i\|_1 + \varepsilon \leq 2\varepsilon
 \end{aligned}$$

If we can build g_i so that

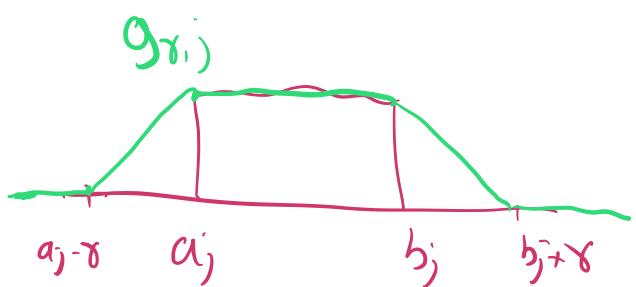
$$\rightarrow \|\mathbb{1}_{R_i} - g_i\|_1 \leq \frac{\varepsilon}{\sum_i |\alpha_i|}, \text{ then we are done.}$$

• Fix i , $R_i = \bigotimes [a_j, b_j]$. For $\gamma > 0$, and for each coordinate $j \in \{1, \dots, d\}$, let

$$g_{\gamma, j}(z) = \Gamma\left(\frac{z - (a_j - \gamma)}{\gamma}\right) - \Gamma\left(\frac{z - a_j}{\gamma}\right)$$

$$- \Gamma\left(\frac{z - b_j}{\gamma}\right) + \Gamma\left(\frac{z - (b_j + \gamma)}{\gamma}\right)$$

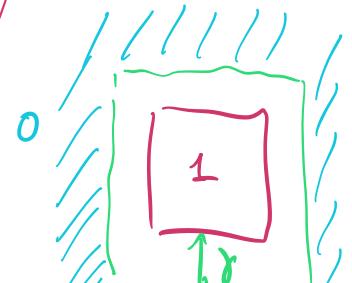
$$\hookrightarrow \sigma(t) = \max(0, t)$$



$$g_\gamma(x) = \Gamma\left(\left(\sum_j g_{\gamma, j}(x)\right) / (d-1)\right)$$

↳ We verify that

$$(i) \quad g_\gamma(x) = \begin{cases} 1 & \text{if } x \in R_i \\ 0 & \text{if } x \notin \bigotimes [a_j - \gamma, b_j + \gamma] \\ \text{[a.s]} & \text{otherwise.} \end{cases}$$



$$(ii) \|g_\gamma - \Pi_{R_i}\|_1 \leq O(\gamma) \quad \square$$

Remark
Are the two hidden layers necessary?

A: Hell no! Recall a classic result in polynomial approximation

Theorem (Stone-Weierstrass) Let $\Omega = [0, 1]^d$. Let \mathcal{F} be a function class satisfying:

- (i) Each $f \in \mathcal{F}$ is continuous
- (ii) $\forall x \in \Omega$, $\exists f \in \mathcal{F}$ such that $f(x) \neq 0$.
- (iii) $\forall x \neq x' \in \Omega$, $\exists f \in \mathcal{F}$ $f(x) \neq f(x')$.
- (iv) \mathcal{F} is an algebra: closed under multiplication and vector space operations.

Then \mathcal{F} enjoys universal approx: any continuous $g: \mathbb{R}^d \rightarrow \mathbb{R}$ $\forall \epsilon > 0$, $\exists \underline{f \in \mathcal{F}}$ with $\sup_x |f(x) - g(x)| \leq \epsilon$.

↳ This theorem can be used to establish UAT for H_σ with general choices of σ :

↳ σ sigmoidal $\lim_{t \rightarrow -\infty} \sigma(t) = 0$, $\lim_{t \rightarrow +\infty} \sigma(t) = 1$

[Hornik et al 89]

↳ $\sigma \neq$ polynomial (Leshno '93)

↳ Is this surprising?

↳ Are the approximation rates worsened using H_σ ?

The Fourier perspective

→ let $f \in C(\mathbb{R}^d)$ and consider its restriction to a compact Ω (eg $\Omega = (0, 1]^d$).

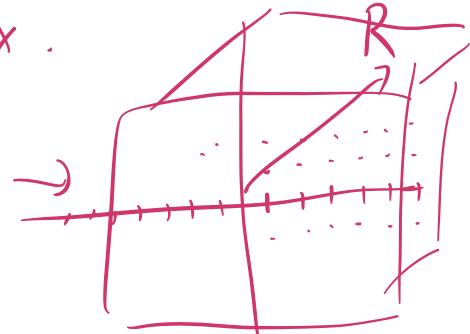
For $\beta \in \mathbb{Z}^d$, consider its Fourier decomposition

$$\begin{aligned}\hat{f}(\beta) &= \left\langle f, e^{i\langle x, \beta \rangle} \right\rangle_{L^2(\Omega)} = \\ &= \int_{\Omega} f(x) e^{-i\langle x, \beta \rangle} dx.\end{aligned}$$

↳ Fourier Inversion Lemma:

$$f_M(x) = \sum_{\|\beta\| \leq R} \hat{f}(\beta) e^{i\langle x, \beta \rangle}$$

f in $L^2(\Omega)$ as $M, R \rightarrow \infty$



M is the number of frequencies inside $\{\beta \mid \|\beta\| \leq R\}$.

$$e^{i\langle x, \beta \rangle} = \mathcal{F}(\langle x, \beta \rangle) \text{ with } \mathcal{F}(t) = e^{it} = \cos t + i \sin t.$$

f_M is a shallow NN with M periodic neurons.

We have tight control of

how regularity of f
↑
decay of \hat{f} as $\|\beta\|$ grows.

$$\begin{cases} f \in W^s \\ \text{sublev.} \end{cases}$$

$$\Rightarrow \|f - f_M\| = O(M^{-s/d}) \quad \begin{array}{l} \text{[Tsybukov]} \\ \text{[de Vore]} \\ \text{etc} \end{array}$$

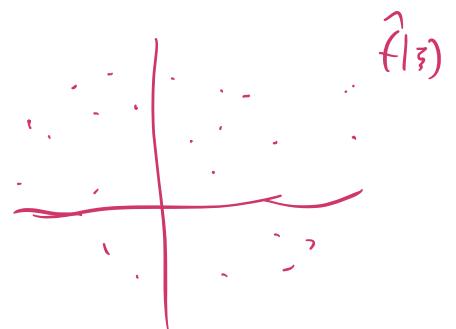
Curse of dim in approximation!

↳ Overcome this curse?

Fourier Representation, in L_1

$$\hat{f}(\xi) = \int f(x) e^{-i\langle x, \xi \rangle} dx$$

$$f(x) = \int (\hat{f}(\xi)) e^{i\langle x, \xi \rangle} d\xi$$



If $\|\hat{f}\|_1$ is finite, $\|\hat{f}\|_1 = \int |\hat{f}(\xi)| d\xi < +\infty$.

Idea: $f(x) = \int \sigma(\langle x, w \rangle) g(w) dw$ with g integrable $\|g\|_1 < +\infty$.

$$g(w) = \text{sign}(g(w)) \cdot \|g\|_1 \cdot \frac{1}{\frac{\|g\|_1}{q(w)}} \quad q \geq 0 \quad \int q(w) dw = 1$$

$$f(x) = \int \sigma(\langle x, w \rangle) \cdot \text{sign}(g(w)) \cdot \|g\|_1 \cdot q(w) dw \quad \Rightarrow q \text{ is a prob. density.}$$

$$= E_q \left[\underbrace{\sigma(\langle x, w \rangle) \cdot \text{sign}(g(w))}_{\phi(x, w)} \right] \cdot \|g\|_1 \quad |\phi| \leq 1$$

$$\hookrightarrow \hat{f}_M(x) = \frac{1}{M} \sum_{m=1}^M \phi(x, w_i) \quad w_i \sim q \text{ iid.} \quad \begin{cases} \text{Mink-Carlo} \\ \text{estimator} \end{cases}$$

$$E \|f - \hat{f}_M\|^2 \leq \|g\|_1^2 \frac{E_q (E_x \phi(x, w)^2)}{M} \leq \frac{\|g\|_1^2 \sup_w (E_x \phi^2)}{M}$$

Curse of dim is avoided, provided $\|g\|_1 < +\infty$.

Theorem: [Barron' 93] Suppose $C = \int \|\widehat{\nabla f}(z)\| dz < +\infty$
with $f, \widehat{f} \in L_1$. Then we can approximate f with
to accuracy ε with ReLU/Sigmoid units with $\sim \mathcal{O}_{\varepsilon^2}$
(No noise!).

↳ Main q: When/Why is C small.

Conclusions / Take-home:

- (*) Learning in high-dim efficiently requires new function spaces, adapted to the physical world (images, sounds, etc.).