

BGSM/CRM AL&DNN

Gradient descent and stochastic approximation

S. Xambó

UPC & IMTech

14/10/2021

Abstract

A study of the Stochastic Gradient Descend ([SGD](#)) and its role in Deep Learning.

Introduced in [1], stochastic approximation has ever since been the focus of attention by many researchers.

Here are some of the sources appeared in the [last decade](#) that you may find useful for the study of today's topic:

[2], [3], [4], [5], [6], [7], [8], [9], [10], [11].

As a main reference you may consider [\[3, Ch. 14\]](#)

Index

Background notions

Subgradients

Gradient (and subgradient) descent (GD)

Stochastic gradient descent (SGD)

Appendix on Newton's method

A quotation

Background notions

Directional derivatives, differentials and gradients
Epigraph of a function

- \mathcal{X} is open subset of \mathbf{R}^n and $f : \mathcal{X} \rightarrow \mathbf{R}$ is a differentiable function.

The *directional derivative* of f at x in the direction v is

$$D_v f(x) = \frac{d}{dt} f(x + tv) \Big|_{t=0}.$$

- Since $f(x + tv) = f(x) + t(d_x f)(v) + O(t^2)$, by definition of the differential, we see that $D_v f(x) = (d_x f)(v)$.
- If e_1, \dots, e_n is the standard basis of \mathbf{R}^n , then

$$(d_x f)(e_i) = D_{e_i} f(x) = \partial f(x) / \partial x_i = \partial_i f(x).$$
- It follows that $(d_x f)(v) = \sum_{i=1}^n v_i \partial_i f(x) = v \cdot \nabla f(x)$, where

$$\nabla f(x) = (\partial_1 f(x), \dots, \partial_n f(x)).$$
- Therefore $D_v f(x) = v \cdot \nabla f(x)$. This implies that $\nabla f(x)$ is the direction of the greatest growth rate of f at x . Hence $-\nabla f(x)$ is the direction of *steepest descent*.
- $\nabla f(x)$ is orthogonal to the level sets $\mathcal{X}_\lambda = \{x \in \mathcal{X} \mid f(x) = \lambda\}$: if v is tangent to \mathcal{X}_λ , then $v \cdot \nabla f(x) = D_v f(x) = d_x f(v) = 0$.

\mathcal{X} a subset of \mathbf{R}^n and $f : \mathcal{X} \rightarrow \mathbf{R}$ a function.

The *epigraph* of a f , denoted $\text{Epi}(f)$, is the subset of $\mathcal{X} \times \mathbf{R}$ whose points (x, t) satisfy $t \geq f(x)$.

Lemma. If \mathcal{X} and f are convex, then $\text{Epi}(f)$ is convex.

Proof. Let $(x, t), (x', t') \in \text{Epi}(f)$. Choose any $\lambda \in (0, 1)$. We want to see that

$$\lambda(x, t) + (1 - \lambda)(x', t') = (\lambda x + (1 - \lambda)x', \lambda t + (1 - \lambda)t') \in \text{Epi}(f).$$

Since $\lambda x + (1 - \lambda)x' \in \mathcal{X}$, because \mathcal{X} is convex, we can write:

$$\begin{aligned} f(\lambda x + (1 - \lambda)x') &\leq \lambda f(x) + (1 - \lambda)f(x') \quad (\text{as } f \text{ is convex}) \\ &\leq \lambda t + (1 - \lambda)t' \quad (\text{definition of epigraph}). \end{aligned} \quad \square$$

Subgradients

... and convexity

Remarks

Examples

... and Lipschitzness

\mathcal{X} a subset of \mathbf{R}^n and $f : \mathcal{X} \rightarrow \mathbf{R}$.

- A vector $s \in \mathbf{R}^n$ is a *subgradient* of f at x if for any $x' \in \mathcal{X}$
$$f(x') \geq f(x) + s \cdot (x' - x), \text{ or } f(x) \leq f(x') + s \cdot (x - x').$$

Mnemonics:

$$f(x) - f(x') \leq s_x \cdot (x - x'), \quad f(x) - f(x') \geq s_{x'} \cdot (x - x')$$

- The *set* of subgradients of f at x is denoted $\partial f(x)$.

Theorem. Assume \mathcal{X} is convex.

- If $\partial f(x) \neq \emptyset$ for all $x \in \mathcal{X}$, then f is convex.
- Conversely, if f is convex then $\partial f(x) \neq \emptyset$ for any $x \in \mathcal{X}^\circ$.
- If f is convex and differentiable at x , then $\nabla f(x) \in \partial f(x)$.

Proof. (a) Let $x, x' \in \mathcal{X}$ and $\lambda \in (0, 1)$. We want to prove that $f(\lambda x + (1 - \lambda)x') \leq \lambda f(x) + (1 - \lambda)f(x')$.

Let $x_\lambda = (1 - \lambda)x + \lambda x'$ and $s \in \partial f(x_\lambda)$. Then

$$f(x) \geq f(x_\lambda) + s \cdot (x - x_\lambda) = f(x_\lambda) + (1 - \lambda)s \cdot (x - x'),$$
$$f(x') \geq f(x_\lambda) + s \cdot (x' - x_\lambda) = f(x_\lambda) + \lambda s \cdot (x' - x) \Rightarrow$$

$$\lambda f(x) + (1 - \lambda)f(x') \geq f(x_\lambda).$$

(b) Let $x \in \mathcal{X}$. Then $(x, f(x)) \in \partial \text{Epi}(f)$. Since $\text{Epi}(f)$ is convex, by the separation hyperplane theorem there exists $(u, a) \in \mathbf{R}^n \times \mathbf{R}$, $(u, a) \neq (0, 0)$, such that

$$(*) \quad u \cdot x + af(x) \geq u \cdot x' + at' \text{ for all } (x', t') \in \text{Epi}(f).$$

Since t' can be as large as we wish, we infer that $a \leq 0$.

Now let $x \in \mathcal{X}^\circ$. For a sufficiently small $\epsilon > 0$, $x' = x + \epsilon u \in \mathcal{X}$ and hence $u \cdot x + af(x) \geq u \cdot x + \epsilon u \cdot u + at'$, or $af(x) \geq \epsilon u \cdot u + at'$. This implies that $a < 0$: if $a = 0$, then $\epsilon u \cdot u \leq 0$, which is not possible because $(u, a) \neq (0, 0)$.

Set $t' = f(x')$ in the inequality $(*)$. Rearranging,

$$a(f(x') - f(x)) \leq u \cdot (x - x'), \text{ or } f(x') - f(x) \geq \frac{1}{-a} u \cdot (x' - x),$$

which shows that $s = \frac{1}{-a} u$ is a subgradient of f at x .

(c) If f is convex and differentiable at x , we know that

$$f(x') \geq f(x) + (x' - x) \cdot \nabla f(x).$$

But this just says that $\nabla f(x)$ is a subgradient of f at x . □

- It may be instructive to prove statement (c) in the present context. Rewrite the convexity condition of f ,

$$f((1 - \lambda)x + \lambda x') \leq (1 - \lambda)f(x) + \lambda f(x')$$

in this form:

$$\begin{aligned} f(x') &\geq \frac{f(x + \lambda(x' - x)) - f(x) + \lambda f(x)}{\lambda} \\ &= f(x) + \frac{f(x + \lambda(x' - x)) - f(x)}{\lambda}. \end{aligned}$$

Now letting $\lambda \rightarrow 0$ in the fraction, we get $(x' - x) \cdot \nabla f(x)$, and this ends the proof. □

- In the statement (b), the condition $x \in \mathcal{X}^\circ$ can be replaced by $x \in \mathcal{X}^{\text{ri}}$, the interior of \mathcal{X} relative to its affine span $[\mathcal{X}]$.
- $\nabla f(x)$ provides only local information about f around x , whereas $s \in \partial f(x)$ gives a linear function that is a (global) lower bound of f .

- A local minimum x of a convex function f is a global minimum (equivalent to $0 \in \partial f(x)$): For any x' and sufficiently small ϵ , $f(x) \leq f((1 - \epsilon)x + \epsilon x') \leq (1 - \epsilon)f(x) + \epsilon f(x') \Rightarrow f(x) \leq f(x')$.

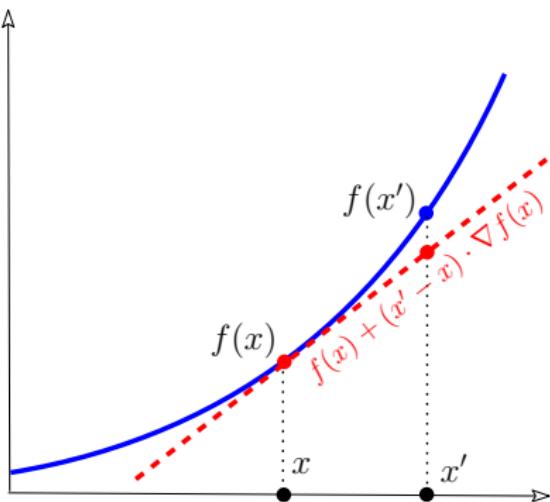
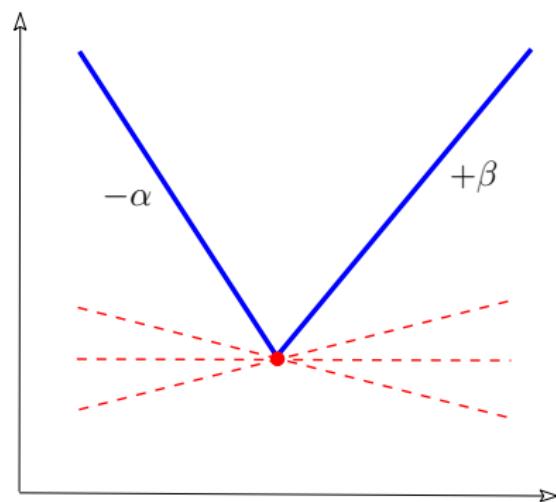
Theorem. Let \mathcal{X} be convex and closed, and $f : \mathcal{X} \rightarrow \mathbb{R}$ convex. Then $\bar{x} \in \operatorname{argmin}_{x \in \mathcal{X}} f(x)$ if and only if $\nabla f(\bar{x}) = 0$.

Proof. Assume $\bar{x} \in \mathcal{X}$ satisfies $f(\bar{x}) \leq f(x)$ for all $x \in \mathcal{X}$. Then in particular $h(t) = f(\bar{x} + t(x - \bar{x}))$ has a minimum at $t = 0$. So

$\frac{dh(t)}{dt}|_{t=0} = 0$. But since this derivative is equal to

$D_{x-\bar{x}} f(\bar{x}) = (x - \bar{x}) \cdot \nabla f(\bar{x})$, we have that $\nabla f(\bar{x})$ is orthogonal to all vectors of the form $x - \bar{x}$, $x \in \mathcal{X}$. But $\nabla f(\bar{x})$ belongs to the linear span of these vectors, and hence must vanish.

And if $\nabla f(\bar{x}) = 0$, then 0 is a subgradient of f at \bar{x} and therefore $f(x) \geq f(\bar{x}) + 0 \cdot (x - \bar{x}) = f(\bar{x})$.



If $f(x)$ is differentiable at x , then $\nabla f(x)$ is the unique subgradient of f at x , and this gives the tangent at $(x, f(x))$ to the graph of f . The image on the left illustrates this. The function depicted on the right has constant slope $-\alpha$ ($+\beta$) to the left (right) of x_0 , so these are the only subgradients to the left (right) of x_0 . At the point x_0 , the subgradients are the points in the interval $[-\alpha, +\beta]$.

Example. Let $f_j(x)$, $j \in [m]$, be convex differentiable functions defined on a convex set \mathcal{X} .

Set $f(x) = \max_j f_j(x)$.

If for a given $x \in \mathcal{X}$ we have $f(x) = f_k(x)$, $k \in [m]$, then $\nabla f_k(x) \in \partial f(x)$.

Note that the function $f(x)$ is convex: if $x, x' \in \mathcal{X}$, and $\lambda \in (0, 1)$, for any $j \in [m]$ we have

$$f_j(\lambda x + (1 - \lambda)x') \leq \lambda f_j(x) + (1 - \lambda)f_j(x') \leq \lambda f(x) + (1 - \lambda)f(x'),$$

and hence $f(\lambda x + (1 - \lambda)x') \leq \lambda f(x) + (1 - \lambda)f(x')$.

Now we have: $f_k(x') \geq f_k(x) + (x' - x) \cdot \nabla f_k(x)$, as f_k is convex.

Since $f(x') \geq f_k(x')$ and $f_k(x) = f(x) \Rightarrow$

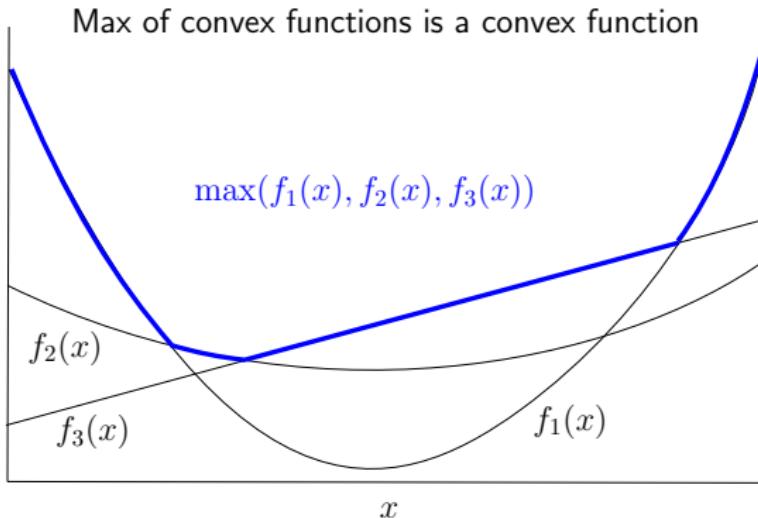
$$f(x') \geq f(x) + (x' - x) \cdot \nabla f_k(x).$$

□

A special case of the previous example is the *hinge loss*

$$f(x) = \max(0, 1 - y(x \cdot \xi))$$

at a data point ξ with label $y \in \{\pm 1\}$. If $1 - y(x \cdot \xi) < 0$, then 0 is a subgradient. Otherwise, it is $\nabla_x(1 - y(x \cdot \xi)) = -y\xi$.



Lemma. Let \mathcal{X} be *open* and *convex* and let $f : \mathcal{X} \rightarrow \mathbf{R}$ be *convex*. Then f is ρ -Lipschitz over \mathcal{X} if and only if $\|s\| \leq \rho$ for any $x \in \mathcal{X}$ and any $s \in \partial f(x)$.

Proof. (\Leftarrow) Assume that for all $x \in \mathcal{X}$ and $s \in \partial f(x)$ we have $\|s\| \leq \rho$. Then, for any $x' \in \mathcal{X}$, $f(x) - f(x') \leq s \cdot (x - x')$, by definition of subgradient, and

$$s \cdot (x - x') \leq \|s\| \|x - x'\| \leq \rho \|x - x'\| \quad (\text{by Cauchy-Schwartz}).$$

So $f(x) - f(x') \leq \rho \|x - x'\|$. Analogously, with $s' \in \partial f(x')$,

$$f(x') - f(x) \leq s' \cdot (x' - x) \leq \|s'\| \|x' - x\| \leq \rho \|x' - x\|.$$

In sum, $|f(x') - f(x)| \leq \rho \|x' - x\|$ and f is ρ -Lipschitz.

(\Rightarrow) Assume f is ρ -Lipschitz and pick $x \in \mathcal{X}$ and $s \in \partial f(x)$.

Since \mathcal{X} is open, there exists $\epsilon > 0$ such that

$$x' = x + \epsilon s / \|s\| \in \mathcal{X}.$$

Therefore

$$(x' - x) \cdot s = \epsilon \|s\| \text{ and } \|x' - x\| = \epsilon.$$

By the definition of subgradient,

$$f(x') - f(x) \geq s \cdot (x' - x) = \epsilon \|s\|.$$

On the other hand, by ρ -Lipschitzness,

$$\rho\epsilon = \rho\|x' - x\| \geq f(x') - f(x).$$

So

$$\epsilon \|s\| \leq f(x') - f(x) \leq \rho\epsilon,$$

and hence $\|s\| \leq \rho$.

□

Corollary. If f is differentiable and ρ -Lipschitz, then $\|\nabla f(x)\| \leq \rho$ for all x .

Proof. Its a direct consequence of the lemma on page 16 and the fact that the gradient $\nabla f(x)$ is a subgradient. □

Gradient descent (GD)

Basic algorithms
Convergence results

Inputs

$f : \mathbf{R}^n \rightarrow \mathbf{R}$, $\eta \in \mathbf{R}_{++}$ (*learning rate*),
 $x^0 \in \mathbf{R}^n$ (starting point), r (number of steps)

Procedure

Do r times:

$$x^k = x^{k-1} - \eta \nabla f(x^{k-1})$$

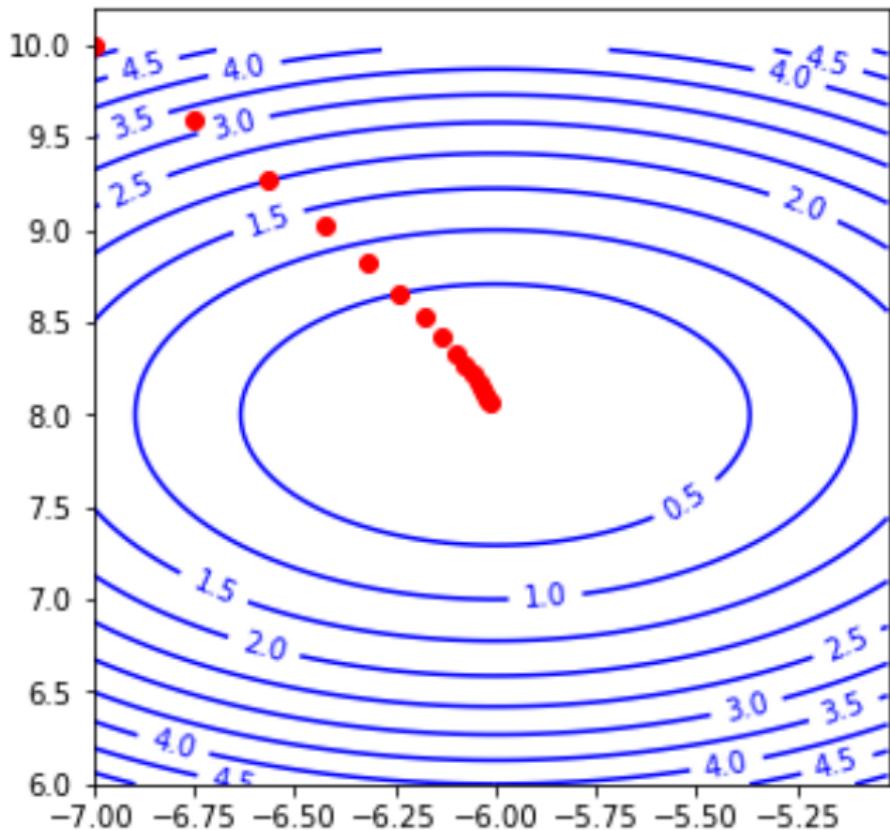
Naif output: x^r .

Smart output: $\hat{x} = \frac{1}{r} \sum_{k \in [r]} x^k$.

Example (cf. [3, Fig. 14.1]). $f(x, y) = 1.25(x + 6)^2 + (y - 8)^2$,
 $\nabla_{x,y} f = (2.5(x + 6), 2(y - 8))$.

With $\eta = 0.1$, $x^0 = (-7, 10)$, and $r = 15$, the sequence
 x^0, x^1, \dots, x^r is depicted in the image on next page.

The blue lines represent level sets of $f(x, y)$.



```
eta = 0.1
def f(x, y): return 1.25*(x + 6)**2 + (y-8)**2
def Gf(x, y): return [2.5*(x+6), 2*(y-8)]

a = -7; b = 10
A=[a]; B=[b]
N = 15

for _ in range(1,N+1):
    ga,gb = Gf(a,b)
    a,b = (a-eta*ga, b-eta*gb)
    A += [a]; B += [b]

plt.plot(A,B, 'o', color='r')
```

1. **Input**: Initial value $x = x^0$
2. **while not converged**:
3. $x = x - \eta \nabla f(x)$
4. **convergence check**
5. **[update η]**
6. **return** x .

Lemma

(a) Fix a positive integer r , a positive real number η , a vector $\bar{x} \in \mathbf{R}^n$, and a sequence $v^1, \dots, v^r \in \mathbf{R}^n$. Let $x^1 = 0$ and define

$$x^{k+1} = x^k - \eta v^k \text{ for } k \in [r].$$

Then we have the inequality

$$\sum_{k \in [r]} \langle x^k - \bar{x}, v^k \rangle \leq \frac{1}{2\eta} \|\bar{x}\|^2 + \frac{\eta}{2} \sum_{k \in [r]} \|v^k\|^2. \quad (1)$$

(b) Fix $B, \rho \in \mathbf{R}_{++}$ such that $\|v^k\| \leq \rho$ and $\|\bar{x}\| \leq B$. Let $\eta = B/\rho\sqrt{r}$. Then

$$\frac{1}{r} \sum_{k \in [r]} \langle x^k - \bar{x}, v^k \rangle \leq B\rho/\sqrt{r}.$$

Proof. Using the identity $x \cdot x' = \frac{1}{2}(-\|x - x'\|^2 + \|x\|^2 + \|x'\|^2)$ ($x, x' \in \mathbf{R}^n$), we have:

$$\begin{aligned}\langle x^k - \bar{x}, v^k \rangle &= \frac{1}{\eta} \langle x^k - \bar{x}, \eta v^k \rangle \\ &= \frac{1}{2\eta} (-\|x^k - \bar{x} - \eta v^k\|^2 + \|x^k - \bar{x}\|^2 + \eta^2 \|v^k\|^2) \\ &= \frac{1}{2\eta} (-\|x^{k+1} - \bar{x}\|^2 + \|x^k - \bar{x}\|^2) + \frac{\eta}{2} \|v^k\|^2.\end{aligned}$$

Adding up for $k \in [r]$, we get (using the $x^1 = 0$)

$$\begin{aligned}\sum_{k \in [r]} \langle x^k - \bar{x}, v^k \rangle &= \frac{1}{2\eta} (-\|x^{r+1} - \bar{x}\|^2 + \|\bar{x}\|^2) + \frac{\eta}{2} \sum_{k \in [r]} \|v^k\|^2 \\ &\leq \frac{1}{2\eta} \|\bar{x}\|^2 + \frac{\eta}{2} \sum_{k \in [r]} \|v^k\|^2,\end{aligned}$$

which establishes the inequality (a).

To end the proof, it is enough to use the bounds $\|\bar{x}\| \leq B$ and $\|v^k\| \leq \rho$, and the value $B/\rho\sqrt{r}$ given to η : we get

$$\sum_{k \in [r]} \langle x^k - \bar{x}, v^k \rangle \leq B\rho\sqrt{r},$$

and the claim follows on dividing by r .

Remark. In next slide we use *Jensen's inequality*:

If $f : \mathcal{X} \rightarrow \mathbf{R}$ is convex, then

$$f(\lambda_1 x^1 + \cdots + \lambda_k x^k) \leq \lambda_1 f(x^1) + \cdots + \lambda_k f(x^k)$$

for any $x^1, \dots, x^k \in \mathcal{X}$ and any $\lambda_1, \dots, \lambda_k \in \mathbf{R}_+$ such that $\lambda_1 + \cdots + \lambda_k = 1$.

Proof. The statement is trivial for $k = 1$, or if $\lambda_1 = 1$. So we may assume that $k \geq 2$ and $\lambda_1 \neq 1$. Let

$$x' = (\lambda_2 x^2 + \cdots + \lambda_k x^k) / (1 - \lambda_1).$$

Since $(\lambda_2 + \cdots + \lambda_k) / (1 - \lambda_1) = 1$, $x' \in \mathcal{X}$ and hence

$$f(\lambda_1 x^1 + (1 - \lambda_1)x') \leq \lambda_1 f(x^1) + (1 - \lambda_1)f(x').$$

By induction,

$$f(x') \leq \frac{\lambda_2}{1 - \lambda_1} f(x^2) + \cdots + \frac{\lambda_k}{1 - \lambda_k} f(x^k),$$

and the proof follows immediately, as

$$(1 - \lambda_1)f(x') \leq \lambda_2 f(x^2) + \cdots + \lambda_k f(x^k).$$

□

Theorem. Let f be a convex ρ -Lipschitz function, and $\bar{x} = \operatorname{argmin}_{x: \|x\| \leq B} f(x)$. If we run the algorithm **GD1** on f for r steps with $\eta = B/\rho\sqrt{r}$, then the output vector \hat{x} satisfies

$$f(\hat{x}) - f(\bar{x}) \leq B\rho/\sqrt{r}.$$

Thus, for every $\epsilon > 0$, the inequality $f(\hat{x}) - f(\bar{x}) \leq \epsilon$ is achieved as soon as $r \geq B^2\rho^2/\epsilon^2$.

Proof. We have:

$$\begin{aligned}
 f(\hat{x}) - f(\bar{x}) &= f\left(\frac{1}{r} \sum_{k \in [r]} x^k\right) - f(\bar{x}) \quad (\text{definition of } \hat{x}) \\
 &\leq \frac{1}{r} \left(\sum_{k \in [r]} f(x^k) \right) - f(\bar{x}) \quad (\text{Jensen's inequality}) \\
 &= \frac{1}{r} \sum_{k \in [r]} (f(x^k) - f(\bar{x})) \\
 (*) \quad &\leq \frac{1}{r} \sum_{k \in [r]} \langle x^k - \bar{x}, \nabla f(x^k) \rangle \quad (f \text{ is convex}) \\
 &\leq B\rho/\sqrt{r}.
 \end{aligned}$$

The last inequality is a consequence of $\|\nabla f(x^k)\| \leq \rho$ (Lemma on page 18) and the second part of the Lemma on page 24.

The **GD** procedure works for nondifferentiable functions by using a subgradient of $f(x)$ at x^k .

The results on convergence remain the same.

The key point is that the inequality (*) on the previous slide is valid for a subgradient s^k instead of $\nabla f(x^k)$.

1. **Input**: Initial value $x^0 = x^1$, η , μ

2. $x = x^1$; $p = x^1 - x^0$

3. **while not converged**:

4. $x = x - \eta \nabla f(x) + \mu p$

5. $p = \mu p - \eta \nabla f(x)$

6. **convergence check**

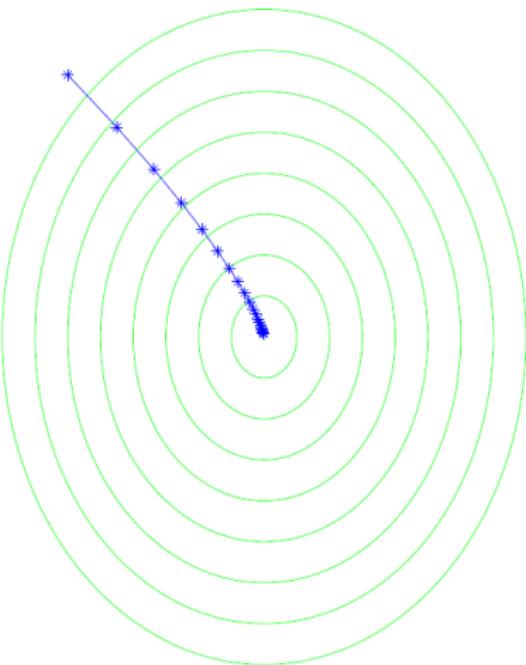
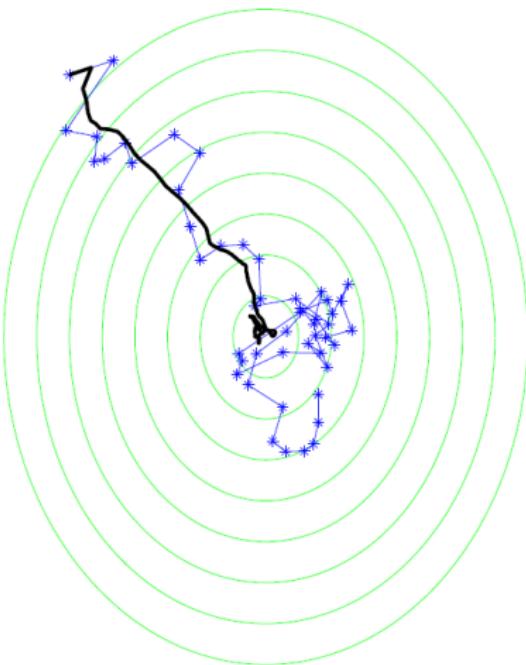
7. **[update η], [update μ]**

8. **return x**

For comparisons of this GD3 (known as *heavy ball method* when η and μ are fixed) with GD1 and GD2, as well as with the *conjugate gradient method*, see [7, § 7.1]. See also § 7.2 for a short account of the Nesterov *accelerated gradient methods* and § 7.3 for *coordinate descent methods*.

Stochastic gradient descent

Stochastic gradients
Basic SGD algorithms
Convergence results



From Fig. 14.3 in [3], illustrating the behavior of the optimization steps when instead of the gradient an *stochastic gradient* is used, namely, a random vector whose *expected value* points in the same direction as the gradient.

Assume \mathcal{H} is a hypothesis space of parameterized functions: $\{f_w\}_{w \in W}$. In algorithmic learning, the main problem is minimizing the loss (or risk) function $L(f_w) = L(w)$.

In empirical risk minimization, we used the empirical risk $L_{\mathcal{D}}(w)$, associated with data \mathcal{D} to approximate $L(w)$. Notice that we cannot use gradient methods to directly minimize $L(w)$, as its definition depends on the unknown probability distribution ruling the generation of data.

The stochastic techniques allow to deal with the minimization of $L(w)$ by supplying a random vector v whose conditional expected value is $\nabla L(w)$: $\mathbb{E}[v|w] = \nabla L(w)$.

For simplicity, assume first that the local loss function, $\ell(w, z)$ is differentiable. Then we can define the stochastic gradient, relative to w , as the random vector such that $\mathbb{E}[v|w] = \mathbb{E}_{z \sim \mathcal{P}}[\nabla_w \ell(w, z)]$. By linearity of the gradient,

$$\mathbb{E}_{z \sim \mathcal{P}}[\nabla_w \ell(w, z)] = \nabla_w \mathbb{E}_{z \sim \mathcal{P}}[\ell(w, z)] = \nabla L(w).$$

Thus $\nabla_w \ell(w, z)$ is an unbiased estimate of $\nabla L(w)$.

In practice this means sampling z and taking $\nabla_w \ell(w, z)$ as stochastic gradient at w .

For non-differentiable functions, $\nabla_w \ell(w, z)$ has to be replaced by a subgradient v of $\ell(w, z)$ at w . Then for any x we have $\ell(x, z) - \ell(w, z) \geq \langle x - w, v \rangle$ and taking expectation of both sides with respect to $z \sim \mathcal{P}$, we get

$$L(x) - L(w) \geq \mathbb{E}[\langle x - w, v \rangle] = \langle x - w, \mathbb{E}[v] \rangle,$$

which shows that $\mathbb{E}[v]$ is a subgradient of $L(w)$ at w .

1. **Parameters:** η (or η_1, η_2, \dots) and r .
2. **require:** Initial value $w^1 = 0$
3. **for** $k = 1, 2, \dots, r$
4. sample z
5. pick $v_k \in \partial \ell(w^k, z)$
6. update: $w^{k+1} = w^k - \eta v$
7. **return** $\bar{w} = \frac{1}{r} \sum_1^r w^k$

Appendix

Newton's method

Levenberg-Marquardt procedure

Let $\bar{x} = \operatorname{argmin}_{x \in \mathcal{X}} f(x)$, \mathcal{X} an open subset of \mathbf{R}^n . Assume that f is differentiable and let $\nabla^2 f(x) = Hf(x)$ be the *Hessian* of f , that is, the symmetric matrix $(\partial_i \partial_j f(x))_{i,j=1}^n$.

Newton's algorithm aims at approximating \bar{x} starting with a *guess* x^0 and constructing a sequence x^1, x^2, \dots as follows:

$$x^{k+1} = x^k + \Delta_k, \text{ where } \Delta_k Hf(x^k) = -\nabla f(x^k).$$

The *heuristics* for this rule are:

- (1) $\nabla f(x^{k+1}) \approx \nabla f(x^k) + (x^{k+1} - x^k) Hf(x^k)$;
- (2) If $x^{k+1} = \bar{x}$, then we would have $0 = \nabla f(x^k) + (\bar{x} - x^k) Hf(x^k)$, which would allow to find \bar{x} ; and
- (3) Proceed as if $\nabla f(x^{k+1}) = 0$ and replace $x^{k+1} - x^k$ by Δ_k , which leads to the equation $0 = \nabla f(x^k) + \Delta_k Hf(x^k)$.

Fact. $\|x^{k+1} - \bar{x}\| \leq C \|x^k - \bar{x}\|^2$.

This insures a fast convergence to \bar{x} as soon as x^k is close to \bar{x} .

Levenberg-Marquardt for nonlinear least squares: combine gradient descent and Newton update rules into one rule, with a parameter λ . Small values of λ lean toward Newton, large values of λ will lean toward gradient descent.

One of the principal discoveries in machine learning in recent years is an empirical one—that *simple algorithms often suffice to solve difficult real-world learning problems*.

Machine learning algorithms generally arise via formulations as optimization problems, and, despite a massive classical toolbox of sophisticated optimization algorithms and a major modern effort to further develop that toolbox, the *simplest algorithms—gradient descent*, which dates to the 1840s [Cauchy, 1847] and stochastic gradient descent, which dates to the 1950s [Robbins and Monro, 1951]—*reign supreme in machine learning*.

References I

- [1] H. Robbins and S. Monro, "A stochastic approximation method," *The Annals of Mathematical Statistics*, pp. 400–407, 1951.
- [2] N. L. Roux, M. Schmidt, and F. R. Bach, "A stochastic gradient method with an exponential convergence-rate for finite training sets," *Advances in Neural Information Processing Systems*, pp. 2663–2671, 2012.
- [3] S. Shalev-Shwartz and S. Ben-David, *Understanding machine learning: From theory to algorithms*. Cambridge university press, 2014.
440 pp.

References II

- [4] D. P. Kingma and J. Ba, "Adam: A method for stochastic optimization," in *3rd international conference for learning representations, San Diego*, ICLR, 2015.
<https://arxiv.org/abs/1412.6980>.
- [5] S. Bubeck, "Convex optimization: Algorithms and complexity," *Foundations and Trends® in Machine Learning*, vol. 8, no. 3-4, pp. 231–358, 2015.
[arXiv:1405.4980](https://arxiv.org/abs/1405.4980).
- [6] R. H. Byrd, S. L. Hansen, J. Nocedal, and Y. Singer, "A stochastic quasi-Newton method for large-scale optimization," *SIAM Journal on Optimization*, vol. 26, no. 2, pp. 1008–1031, 2016.
<https://arxiv.org/pdf/1401.7020.pdf>.

References III

[7] L. Bottou, F. E. Curtis, and J. Nocedal, “Optimization methods for large-scale machine learning,” *Siam Review*, vol. 60, no. 2, pp. 223–311, 2018.

<https://arxiv.org/pdf/1606.04838.pdf>.

[8] G. Strang, *Linear algebra and learning from data*.
Wellesley-Cambridge Press, 2019.

[9] C. Jin, P. Netrapalli, R. Ge, S. M. Kakade, and M. I. Jordan, “On nonconvex optimization for machine learning: Gradients, stochasticity, and saddle points,” 2019.

<https://arxiv.org/pdf/1902.04811.pdf>.

References IV

- [10] C. Jin, P. Netrapalli, R. Ge, S. M. Kakade, and M. I. Jordan, "On nonconvex optimization for machine learning: Gradients, stochasticity, and saddle points," *Journal of the ACM (JACM)*, vol. 68, no. 2, pp. 1–29, 2021.
- [11] J. Fearnley, P. W. Goldberg, A. Hollender, and R. Savani, "The complexity of gradient descent: $\text{CLS} = \text{PPAD} \cap \text{PLS}$," in *Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing*, pp. 46–59, 2021.