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Abstract

A study of the Stochastic Gradient Descend (SGD) and its role in
Deep Learning.

Introduced in [1], stochastic approximation has ever since been the
focus of attention by many researchers.

Here are some of the sources appeared in the last decade that you
may find useful for the study of today's topic:

(2], [3]. [41, [5]. [6]. [7], [8]. [9]. [10], [11].

As a main reference you may consider [3, Ch. 14]
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Background notions Directional derivatives, differentials and gradients

= X is open subset of R” and f : X' — R is a differentiable function.
The directional derivative of f at x in the direction v is

D, f(x) = Zf(x + tv)]eo.
= Since f(x + tv) = f(x) + t(d.f)(v) + O(t?), by definition of the
differential, we see that D, f(x) = (d.f)(v).

=If e;,--- , e, is the standard basis of R”, then
(dif)(e)) = De, f(x) = 0f(x)/0x; = 0if (x).

= It follows that (dxf)(v) = > 7, v;0;f(x) = v - Vf(x), where
Vi(x) = (01f(x), - ,0,f(x)).

= Therefore D,f(x) = v - Vf(x). This implies that Vf(x) is the
direction of the greatest growth rate of f at x. Hence —Vf(x) is the
direction of steepest descent.

= Vf(x) is orthogonal to the level sets X, = {x € X | f(x) = A}: if v
is tangent to X, then v - Vf(x) = D,f(x) = dif(v) = 0.

S. Xambé (UPC & IMTech) AL & DNN 14/10/2021 5/43



Background notions Epigraph of a funtion

X a subset of R” and f : X — R a function.
The epigraph of a f, denoted Epi(f), is the subset of XX x R whose
points (x, t) satisfy t > f(x).
Lemma. If X and f are convex, then Epi(f) is convex.
Proof. Let (x,t),(x,t') € Epi(f). Choose any A € (0,1). We want
to see that
Ax, t) + (L =N (X, ') = (Ax+ (1= A)xX, At + (1 — \)t') € Epi(f).
Since Ax + (1 — A\)x’ € X, because X is convex, we can write:

FOAx + (1= M)XK M (x)+ (1= N)F(xX) (as f is convex)

< At+ (1 —A)t"  (definition of epigraph). [J
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Subgradients ... and convexity

X a subset of R” and f : X — R.

= A vector s € R" is a subgradient of f at x if for any x' € X
f(x) = f(x)+s-(xX'—x),or f(x) < f(x)+s-(x—x).

Mnemonics:
f(x)—f(x') <se-(x—=x), f(x)—Ff(X)=s0-(x—x)
» The set of subgradients of f at x is denoted Of(x).

Theorem. Assume X is convex.

(a) If Of(x) # 0 for all x € X, then f is convex.

(b) Conversely, if f is convex then Of(x) # () for any x € X°.
(c) If f is convex and differentiable at x, then Vf(x) € Of(x).
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Subgradients ... and convexity

Proof. (a) Let x,x" € X and A € (0,1). We want to prove that
FOx + (1= A)xX) < A(x) + (1= NF(X).

A)
Let x, = (1 — A\)x + Ax" and s € Of(x,). Then

f(x) > f(x)+s-(x—x)=1f(x)+(1—XN)s-(x—x),
f(X)=f(x)+s-(X—x\)=7f(x)+As-(xX —x) =
+(

A(x) + (1 = N f(X') = f(xn).

S. Xambé (UPC & IMTech) AL & DNN 14/10/2021 9/43



Subgradients ... and convexity

(b) Let x € X. Then (x, f(x)) € OEpi(f). Since Epi(f) is convex, by
the separation hyperplane theorem there exists (v, a) € R” x R,
(u,a) # (0,0), such that

(%) u-x+af(x) = u-x' + at’ for all (x',t') € Epi(f).

Since t’ can be as large as we wish, we infer that a < 0.

Now let x € X°. For a sufficiently small ¢ > 0, x’ = x + eu € X and
hence u-x+ af(x) > u-x+eu-u+ at', or af(x) > eu - u + at’.
This implies that a < 0: if a =0, then eu - v < 0, which is not

possible because (u, a) # (0,0).
Set t' = f(x’) in the inequality (x). Rearranging,
a(f(x') — f(x)) <u-(x—=x), or f(X') = f(x) > Lu- (X —x),

which shows that s = }au is a subgradient of f at x.

(c) If f is convex and differentiable at x, we know that
f(x') = f(x)+ (X' — x) - VF(x).
But this just says that V£ (x) is a subgradient of f at x. O
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Subgradients  Remarks

= It may be instructive to prove statement (c) in the present context.

Rewrite the convexity condition of f,
(1= A)x+Ax) < (1= MN)f(x)+ Af(xX)

in this form: . N . \
Fey » O A =20) = 709+ 10
f(x+ Ax' —x)) —f(x
g SN =) )
Now letting A — 0 in the fraction, we get (x’ — x) - Vf(x), and this
ends the proof. O

= In the statement (b), the condition x € X° can be replaced by
x € X", the interior of X relative to its affine span [X].

= V£ (x) provides only local information about f around x, whereas
s € Of(x) gives a linear function that is a (global) lower bound of f.
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Subgradients  Remarks

= A local minimum x of a convex function f is a global minimum
(equivalent to 0 € Jf(x)): For any x" and sufficiently small ¢,

f(x) <F((1—e)x+ex) <(1—e)f(x)+ef(xX) = f(x) < F(X).
Theorem. Let X be convex and closed, and f : X — R convex. Then
X € argmin, . f(x) if and only if Vf(x) = 0.

Proof. Assume X € X satisfies f(X) < f(x) for all x € X. Then in
particular h(t) = f(x + t(x — X)) has a minimum at t = 0. So
%(tt)h:o = 0. But since this derivative is equal to

D, xf(xX) = (x — X) - Vf(X), we have that Vf(X) is orthogonal to all
vectors of the form x — X, x € X. But Vf(x) belongs to the linear
span of these vectors, and hence must vanish.

And if Vf(x) =0, then 0 is a subgradient of f at X and therefore
f(x) = f(X)+0-(x—x)=f(x).
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Subgradients  Examples

If £(x) is differentiable at x, then V£ (x) is the unique subgradient of
f at x, and this gives the tangent at (x, f(x)) to the graph of f. The
image on the left illustrates this. The function depicted on the right
has constant slope —a (+/) to the left (right) of xo, so these are the
only subgradients to the left (right) of xo. At the point xo, the
subgradients are the points in the interval [—a, +/].
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Subgradients  Examples

Example. Let fj(x), j € [m], be convex differentiable functions
defined on a convex set X.

Set f(x) = max; fi(x).

If for a given x € X we have f(x) = fi(x), k € [m], then
Vi(x) € Of(x).

Note that the function f(x) is convex: if x,x" € X, and A € (0,1),
for any j € [m] we have

fi(Ax + (1 = X)X') < AMi(x) + (1 — N)f(x") < AMf(x) + (1= N)F(X),
and hence f(Ax + (1 — A\)x') < Af(x) + (1 — N)f(X).

Now we have: fi(x") = fi(x) + (X' — x) - Vfi(x), as f is convex.
Since f(x') = fi(x') and f(x) = f(x) =

f(x) = f(x) + (X' — x) - Vi(x). O
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Subgradients  Examples

A special case of the previous example is the hinge loss

f(x) = max(0,1 - y(x - §))
at a data point £ with label y € {£1}. If 1 — y(x-&) <0, then 0 is
a subgradient. Otherwise, it is V(1 — y(x-&)) = —y€&.

Max of convex functions is a convex function

max(fi(z), fo(z), f3(x))
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Subgradients ... and Lipschitzness

Lemma. Let X be open and convex and let f : ' — R be convex.
Then f is p-Lipschitz over X if and only if |s| < p for any x € X and
any s € Of(x).

Proof. (<) Assume that for all x € X and s € Of(x) we have
|s| < p. Then, for any x’ € X, f(x) — f(x') <s-(x —x), by
definition of subgradient, and

s-(x—=x) < |s||x = x| < p|x — x| (by Cauchy-Schwartz).
So f(x) — f(x") < p[x — x'|. Analogously, with s’ € Of(x'),
F(x) =) < 8- (X = x) < [s'][x" = x| < plx" = x|.

In sum, |f(x") — f(x)| < p|x" — x| and f is p-Lipschitz.
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Subgradients ... and Lipschitzness

(=) Assume f is p-Lipschitz and pick x € X and s € Of(x).
Since X is open, there exists ¢ > 0 such that
x'=x+es/|s| € X.
Therefore
(X' —x)-s=c¢|s| and |x" — x| = €.
By the definition of subgradient,
F(x) = f(x) = s- (X' = x) = €|s|.
On the other hand, by p-Lipschitzness,
| > f(X) — f(x).

pe = p|x' —x
So
els| < f(X') = £(x) < pe,

and hence [s| < p.
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Subgradients ... and Lipschitzness
Corollary. If f is differentiable and p-Lipschitz, then |V (x)| < p for
all x.

Proof. Its a direct consequence of the lemma on page 16 and the
fact that the gradient V£ (x) is a subgradient. O
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Gradient descent (GD)

Basic algorithms
Convergence results
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Gradient descent  Basic algorithms, GD1

Inputs
f:R"— R, ne R, (learning rate),
x? € R" (starting point), r (number of steps)

Procedure
Do r times:

xk = xk=1 — pVf(xk1)
Naif output: x".

Smart output: % = 1>, x~.

Example (cf. [3, Fig. 14.1]). f(x,y) = 1.25(x +6)* + (y — 8)?,

Vo f = (250 +6).2(y - 8)).
With 7 = 0.1, x° = (—7,10), and r = 15, the sequence
x% x1 .- x" is depicted in the image on next page.

The blue lines represent level sets of f(x, y).
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Gradient descent Basic algorithms, GD1
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Gradient descent Basic algorithms, GD1

eta = 0.1

def f(x,y): return 1.253%(x + 6)**2 + (y—8) **2

def Gf(x,y): return [2.5%(x+6),2%(y-8)]

|
~J
o

= 10
B=[b]

'_\I_l
o e

for in range(1l,N+1):
ga,gb = Gf(a,b)
a,b = (a-eta*ga, b-eta*gb)
A += [a]; B += [b]

plt.plot(A,B, 'o",color="1r")
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Gradient descent Basic algorithms, GD2

. Input: Initial value x = x
while not converged:
x =x —nVf(x)
convergence check
[update 7]

return x.
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Gradient descent Convergence results

Lemma

(a) Fix a positive integer r, a positive real number 7, a vector
X € R", and a sequence v!,...,v" € R". Let x! = 0 and define

xkH1 = xk — vk for k € [r].
Then we have the inequality
n
D —x k) < *H I*+ Z IveI?. (1)
ke(r] kE[f]
(b) Fix B, p € R, such that |[v*| < p and |x| < B. Let
n= B/p\f. Then

- Z < Bp//r.

ke[
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Gradient descent Convergence results

Proof. Using the identity x - x' = (=[x — X'|* + |x| + [x|?)
(x,x" € R"), we have:

1
(x* —x,vFy= =(x* — %, nv¥)
Ui

1
= o (= =R =M = 2P+ 2 P)
Ui
1
= 5 (X =X ok = 5P%) + 1P,
Adding up for k € [r], we get (using the x' = 0)
_ 1 . L
P N R e (R E DR DN 4 &
kel g 2
n
<ol + 3 SV
ke[r]

which establishes the inequality (a).
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Gradient descent Convergence results

To end the proof, it is enough to use the bounds |X| < B and
|v5| < p, and the value B/p+/r given to 1: we get

Zke[r] (x* —x,v¥) < Bpy/r,
and the claim follows on dividing by r.
Remark. In next slide we use Jensen's inequality:
If f: X — R is convex, then
F(AXE 4 Nex®) <A F(XY) + -+ M F(X5)

for any x',---  x¥ € X and any Ay, -, \x € R, such that
A4+ A= 1
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Gradient descent Convergence results

Proof. The statement is trivial for k = 1, or if \; = 1. So we may
assume that k > 2 and \; # 1. Let

x'=(Max?+ -+ Nx¥) /(1 = \p).
Since (A2 + -+ A\¢)/(1 — A1) =1, X € X and hence
FAxt + (1= M)x) < Mf(xh) + (1= M) F(X).
By induction,

f(x) < 1i2>\1 f(x2) 44 li;k f(Xk),

and the proof follows immeditely, as

(1= M)F() < Aaf(X2) + - - + MeF(xH). O
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Gradient descent Convergence results

Theorem. Let f be a convex p-Lipschitz function, and
X = argmin, | gf(x). If we run the algorithm GD1 on f for r steps
with 77 = B/p+/r, then the output vector X satisfies

f(%) — f(x) < Bp//r.
Thus, for every ¢ > 0, the inequality f(X) — f(x) < ¢ is achieved as
soon as r > B?p? /€2

Proof. We have:
(%) —f(x)=f (%Zke ,xk> — (%) (defintion of %)
<Zke[r] (x )) f(x) (Jensen's inequality)
P ke (FXF) = £(%))
%Zke[r]<x — X, VF(x¥)) (f is convex)
< Bp/V'r.

The last inequality is a consequence of |V f(x*)| < p (Lemma on
page 18) and the second part of the Lemma on page 24. O
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Gradient descent  Subgradient descent

The GD procedure works for nondifferentiable functions by using a
subgradient of f(x) at x*.

The results on convergence remain the same.

The key point is that the inequality (*) on the previous slide is valid
for a subgradient s* instead of Vf(x*).
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Gradient descent GD with momentum, GD3

. Input: Initial value x° = x*, n, u
x=xp=xt—x°
. while not

x =x—nVf(x)+ up

1
2
3
4
5. p=pup—nVF(x)
6
7
8

[ [ 1]

. return x

For comparisons of this GD3 (known as heavy ball method when 7
and ;. are fixed) with GD1 and GD2, as well as with the conjugate
gradient method, see [7, §7.1]. See also §7.2 for a short account of
the Nestorov accelerated gradient methods and §7.3 for coordinate

descent methods.
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Stochastic gradient descent

Stochastic gradients
Basic SGD algorithms
Convergence results
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Stochastic eradient descent  Stochastic eradients

From Fig. 14.3 in [3], illustrating the behavior of the optimization
steps when instead of the gradient an stochastic gradient is used,
namely, a random vector whose expected value points in the same
direction as the gradient.

S. Xambé (UPC & IMTech) AL & DNN 14/10/2021

32/43



Stochastic gradient descent

Assume JH is a hypothesis space of parameterized functions:
{fw}wew- In algorithmic learning, the main problem is minimizing
the loss (or risk) function L(f,) = L(w).

In empirical risk minimization, we used the empirical risk Lp(w),
associated with data D to approximate L(w). Notice that we cannot
use gradient methods to directly minimize L(w), as its definition
depends on the unknown probability distribution ruling the generation
of data.

The stochastic techniques allow to deal with the minimization of
L(w) by supplying a random vector v whose conditional expectated
value is VL(w): E[v|w] = VL(w).
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Stochastic gradient descent

For simplicity, assume first that the local loss function, /(w, z) is
differentiable. Then we can define the stochatic gradient, relative to
w, as the random vector such that E[v|w]| = E, p[V,((w, z)]. By
linearity of the gradient,

E, p[Vul(w,z)] = V,E, p[l(w, z)] = VL(w).
Thus V,,/(w, z) is an unbiased estimate of VL(w).

In practice this means sampling z and takinkg V, /(w, z) as
stochastic gradient at w.

For non-differentiable functions, V,,¢(w, z) has to be replaced by a
subgradient v of /(w, z) at w. Then for any x we have

l(x,z) —l(w,z) > (x — w, v) and taking expectation of both sides
with respect to z ~ P, we get

L(x) = L(w) =2 E[{x = w, V)] = (x — w,E[v]),
which shows that E[v] is a subgradient of L(w) at w.
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N g bk w o=

Stochastic gradient descent  To minimize L(w)

Parameters: 1 (or 7y,7,,...) and r.
require: Initial value w! = 0
for k=1,2,---r
sample z
pick v € dl(w*, 2)
k+1 k

update: w*™ = w" —nv

__l r k
return w = > w
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Appendix

Newton’s method
Levenberg-Marquardt procedure
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Appendix Newton's mehtod

Let X = argmin,exf(x), X an open subset of R”. Assume that f is
differentiable and let V?f(x) = Hf(x) be the Hessian of f, that s,

the symmetric matrix (0;0;f(x))];_;.

Newton's algorithm aims at approximating X starting with a guess x°

and constructing a sequence x, x?,--- as follows:

XK= xK 4 Ay, where A HF(x¥) = =V f(x").
The heuristics for this rule are:
(1) VF(xk1) = VF(x¥) + (x5 — x<)HF (x5);
(2) If x**1 = %, then we would have 0 = V(x*) + (x — x¥)Hf (x¥),
wich would allow to find x; and
(3) Proceed as if Vf(x**1) =0 and replace x**1 — x* by A, which
leads to the equation 0 = V£ (x*) + A, Hf (x¥).
Fact. [x<+1 — 2| < C|xk — x|

This insures a fast convergence to X as soon as x* is close to X.
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Appendix Newton's mehtod

Levenberg-Marquardt for nonlinear least squares: combine gradient
descent and Newton update rules into one rule, with a parameter \.
Small values of \ lean toward Newton, large values of A\ will lean
toward gradient descent.
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Quotation  From [10]

One of the principal discoveries in machine learning in recent years is
an empirical one—that simple algorithms often suffice to solve
difficult real-world learning problems.

Machine learning algorithms generally arise via formulations as
optimization problems, and, despite a massive classical toolbox of
sophisticated optimization algorithms and a major modern effort to
further develop that toolbox, the simplest algorithms— gradient
descent, which dates to the 1840s [Cauchy, 1847| and stochastic
gradient descent, which dates to the 1950s [Robbins and Monro,
1951]—reign supreme in machine learning.
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