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Kernels
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Kernels Prelude: General outlook

The word kernel is used with many meanings, as for example the
kernel of a linear map or of a group homomorphism in mathematics,
or as a synonym of filter in signal theory, also in convolutional neural
networks, and so on.

The kernels, or kernel functions, we are about to study in this session
are quite different notions.

They were introduced by D. Hilbert and J. Mercer in the early years
of last century and have a long, intricate and fascinating history.

James Mercer (1883-1932) [...] proved [...] that positive-definite
kernels can be expressed as a dot product in a high-dimensional
space. [... which is the] basis of the kernel trick [...], which
allows linear algorithms to be easily converted into non-linear al-
gorithms (https://en.wikipedia.org/wiki/James_Mercer_
(mathematician)).

Aim of this session: to unravel the main mathematical facts about
kernels and their relation to algorithmic learning (kernel methods).
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Kernels Prelude: Versatility

Can be defined on a variety of data, including vectors, text, and
strings, among others.

Can express powerful mappings, relations, and patterns, including
classifiers, regressors, clusters, and rankings, among others.

The algorithms based on kernels can deal with nonlinear phenomena
in an efficient and relatively simple way.

There is a comprehensive mathematical framework, the theory of
RKHS, that illuminates the data processing operations and the
derived learning algorithms.

There are convenient software packages that facilitate the
computational aspects.
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Kernels Prelude: Notations

Unless otherwise stated, al vector spaces are real vector spaces.

Generic symbols for some families of vector spaces:

Rn (n ⩾ 1), or En: Euclidean space.

V: Inner product space: Vector space endowed with a bilinear
symmetric scalar product, denoted by x · x ′ or ⟨x , x ′⟩.

H: Hilbert space.

B: Banach space.

Some basic notions about Normed, Banach and Hilbert spaces will be
summarized a little later.
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Kernels Prelude: Notations

Types of inner product spaces

Property Name Alias
x · x > 0 if x ̸= 0 Positive definite Positive
x · x ⩾ 0 for all x Positive semi-definite Semi-positive
x · x < 0 if x ̸= 0 Negative definite Negative
x · x ⩽ 0 for all x Negative semi-definite Semi-negative
∃x , x ′, x · x > 0, x ′ · x ′ < 0 Indefinite

A space V will be denoted V+ if its inner-product is semi-positive.

The types in the table above correspond, with the same names, to
types of real symmetric matrices. These types can be defined in
terms of the signs of the eigenvalues: positive (negative), if all evs
are positive (negative); semi-positive (semi-negative), if the evs are
non-negative (non-positive); indefinite, if some evs are positive and
some negative.
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Kernels Generalities

Kernel functions

Let X be a set.

A (Mercer) kernel on X is a function κ : X× X → R such that
κ(x , x ′) = κ(x ′, x) for all x , x ′ ∈ X (κ is symmetric) and with the
property that for any x1, · · · , xm ∈ X, m ∈ N, and any
λ1, · · · , λm ∈ R, the following inequality holds (Mercer condition):

m∑
i=1

m∑
j=1

λiλjκ(x
i , x j) ⩾ 0. (1)

This means that the symmetric matrix K =
(
κ(x i , x j)

)
i ,j∈[m]

(kernel matrix, or also Gram matrix, of x1, · · · , xm) is semi-positive,
which in turn is equivalent to say that its eigenvalues are
non-negative.

Note. By what we will see, κ(x , x ′) can be thought of as some kind
of similarity degree of (or distance between) x and x ′.
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Kernels Generalities

Cauchy-Schwarz inequality for kernels
Let κ be a kernel on X. Then k(x , x) ⩾ 0 for any x ∈ X and

κ(x , x ′)2 ⩽ κ(x , x)κ(x ′, x ′)
for any x , x ′ ∈ X.
In particular, if κ(x , x) = 0, then κ(x , x ′) = 0 for all x ′ ∈ X.

Proof. Since the kernel matrix of x , x ′,

K =

(
κ(x , x) κ(x , x ′)
κ(x ′, x) κ(x ′, x ′)

)
,

is semi-posive, its determinant κ(x , x)κ(x ′, x ′)− κ(x , x ′)2 ⩾ 0.

Relation to algorithmic learning

Data x1, . . . , xm

κ(x, x′)Kernel
=⇒

Kernel matrix

K = (κ(xi, xj)) LA =⇒
h(x) =

∑
i λiκ(x

i, x)

Predictor
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Kernels Examples

Bilinear kernel. Given V+, κ(x , x
′) = ⟨x , x ′⟩ is a kernel on X = V

(we will say that it is the quadratic or (bi)linear kernel on V).

In fact, in this case the sum in (1) is
m∑
i=1

m∑
j=1

λiλj⟨x i , x j⟩ =

〈∑
i∈[m]

λix
i ,
∑
j∈[m]

λjx
j

〉
⩾ 0.

Pull-back of a kernel. If κ is a kernel on Y and ϕ : X → Y is a map,
then the function κϕ : X× X → R defined by

κϕ(x , x
′) = κ(ϕ(x), ϕ(x ′))

is a kernel on X.

An useful special case occurs when Y = V+ with κ the bilinear kernel.
In this case, κϕ(x , x

′) = ⟨ϕ(x), ϕ(x ′)⟩.

As hinted before, particularly when V = RN , V is usually called a
feature space, ϕ a feature map, and κϕ its associated kernel.
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Kernels Examples

Kernels derived from other kernels. Let κi : X× X, i ∈ N, be a
sequence of kernels on X and λi a sequence of non-negative numbers.

Then the following are kernels on X:

(1) If e1, · · · , er ∈ N, κe1
1 · · ·κer

r .
By induction, it is enough to establish that the product κ1κ2 is a
kernel if κ1 and κ2 are kernels. We will see a proof of this fact below
(page 30).

(2) limi→∞ κi , if the limit exists (for any x , x ′ ∈ X).

(3)
∑

i⩾1 λiκi , if this series converges (for any x , x ′ ∈ X). In
particular, λ1κ1 + · · ·+ λrκr .

(4) The exponential eκ =
∑

j⩾0
κj

j!
, for any kernel κ.
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Kernels Examples

(5) More generally, let a0, . . . , aj , . . . be a sequence of non-negative
real numbers and a(t) =

∑
j⩾0 ajt

j .

Let κ be a kernel on X and assume that −R < κ(x , x ′) < R for all
x , x ′ ∈ X, where R is the radius of convergence of a(t).

Then a(κ) =
∑

j⩾0 ajκ
j is a kernel on X.

(6) If κ is a kernel on X,

κ̄(x , x ′) =

{
0 if κ(x , x) = 0 or κ(x ′, x ′) = 0

κ(x ,x ′)√
κ(x ,x)

√
κ(x ′,x ′)

otherwise.

This kernel is called the normalization of κ. We will prove that it is a
kernel later (page 31).
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Kernels Examples

Concrete examples. The following are kernels on the specified X:

(1) For any X, κ(x , x ′) = a, a ∈ R+ a constant (constant kernel).

(2) Polynomial kernels: If X = V+, in particular if V = Rn, then for
any constant a ∈ R+ and any d ∈ N, κ(x , x ′) = (a + x · x ′)d . The
integer d is the degree of the kernel. Note that for fixed x , κ(x , x ′) is
a polynomial of degree d in x ′.

(3) If X = Rn, α ∈ R++, d ∈ N, κα,d(x , x
′) = e−α||x−x ′||d .

The case d = 1 is the Laplacian kernel, and the case d = 2, the
Gaussian kernel (in this case, α is expressed in the form 1/2σ2).

That the Gaussian kernel is a kernel will be proved later (page 32).

Remark. The functions of the form e−α||x−x ′||d have a radial property :
They decrease radially around any given x when seen as a function
of x ′, with κ(x , x) = 1.
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Background: Normed,
Banach and Hilbert spaces
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Background Prelude

The notions we are going to recall in this section are also valid for the
complex field C, with some mild adaptations, in place of the real field
R. For simplicity we focus on the real case.

Main references: [13], [14].
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Background Normed spaces

A norm on a real vector space L is a function || · || : L → R such that

||x || ⩾ 0 for all x ∈ L, with equality if and only if x = 0 (positivity);

||λx || = |λ|||x || for all x ∈ L and λ ∈ R (homogeneity); and

||x + x ′|| ⩽ ||x ||+ ||x ′|| for all x , x ′ ∈ L (triangle inequality).

The pair (L, || ||) is called a normed vector space.

The Euclidean linear spaces are finite-dimensional normed spaces
(in Rn, for example, ||x || =

√
x21 + · · ·+ x2n ).

Example: ℓp, 1 ⩽ p ⩽ ∞.
This is the space of real sequences x = {xk}k⩾1 such that

||x ||p =
(∑

k⩾1 |xk |p
)1/p

< ∞.

The space ℓ∞ is the space of absolutely bounded sequences x , with
norm ||x ||∞ = sup{|xk |}k⩾1.
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Background Banach spaces

In a normed space the notions of convergent and Cauchy sequences
make sense.

A sequence x1, x2, · · · , xn, · · · ∈ L is convergent if there exists v ∈ V

such that ||xn − v || → 0 as n → ∞.

If this is the case, v is unique and we write v = limn→∞ xn.

The sequence {xn} is said to be a Cauchy sequence if for any ϵ > 0
there exists N = Nϵ such that ||xi − xj || ⩽ ϵ for all i , j ⩾ N . Any
convergent sequence is a Cauchy sequence.

The normed space B = (L, || ||) is said to be complete, or a Banach
space, if any Cauchy sequence is convergent.

Examples. The spaces ℓp (1 ⩽ p ⩽ ∞) are Banach spaces.

If X is a compact topological space, then the space C (X ) of
continuous functions on X , with the norm ||f ||sup = supx∈X |f (x)|, is a
Banach space.
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Background Banach spaces

Any normed space (L, || ||) can be enlarged to a Banach space.

This process mimics the construction of R as a completion of Q.

In fact, the absolute value | · | is a norm on Q (and on R) and R can
be defined as the quotient ring of the ring of Cauchy sequences in Q
by the ideal of sequences that are convergent to 0 (null sequences).

Similarly, we can form the quotient L̄ of the vector space of all
Cauchy sequences in L by the vector subspace of the null sequences.

We note that L ⊆ L̄, by mapping x ∈ L to the class of the constant
sequence xn = x for all n, and that the norm on L extends to a norm
on L̄: the norm ||x̄ || of x̄ ∈ L̄ is defined as limn→∞ ||xn|| for any
Cauchy sequence representing x̄ .
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Background Banach spaces

Example: The Lebesgue spaces Lp (for details, see [14, Ch. 7])

Let X = (X ,Σ, µ) be a measure space and 1 ⩽ p < ∞.

For any measurable function f : X → R, ||f ||p is defined as(∫
X
|f |pdµ

)1/p
, where

∫
X
is the Lebesgue integral.

The Lebesgue space Lp(X), or simply Lp(µ), consists of the
measurable functions f : X → R such that ||f ||p < ∞, with the
convention that two functions are equal if and only if they agree
almost everywhere.

The space Lp is a normed space, with norm || ||p (a consequence of
Minkowski inequality), and in fact it is complete (Riesz-Fischer
theorem), hence a Banach space.

Remark. The space ℓp is a special case: X = {1, 2, 3, · · · } with the
counting measure.
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Background Basis of a Banach space

Let (B, || ||) be a Banach space. If B is finitely-generated, the notion of
basis coincides with the notion introduced in elementary linear algebra: a
finite set of linearly independent vectors that span the space. Since the
results we will state turn out to be obvious in this case, we will assume
that B is not finitely generated.

A basis for B is a sequence u1, · · · , uk , · · · ∈ B such that for each x ∈ B

there is a unique sequence λ1, · · · , λk , · · · ∈ R such that x =
∑

k⩾1 λkuk ,
where the convergence of the series is in the sense of the norm:
x = limn→∞

∑n
k=1 λkuk . Thus the vectors uk are linearly independent and

span a space (their finite linear combinations) that is dense in B.

Example. Let uk ∈ ℓp be {δk,j}j⩾1 (has 1 in the position k and 0
otherwise). Then {uk}k⩾1 is a basis of ℓp, for all p ∈ [1,∞).

Given a basis, a subtle result is that the map λk : B → R, x 7→ λk(x) is
continuous for all k (see [15, Theorem 1.6]).

If for any x ∈ B the convergence of
∑

k⩾1 λkuk is unconditional, {uk} is
said to be an unconditional basis.
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Background Hilbert space

The concept of real Hilbert space is a natural extension of the notion
of Euclidean space to possibly infinite dimensions.

Let H be a real vector space endowed with a inner scalar product
⟨x , y⟩ ∈ R, for all x , y ∈ H, that is bilinear, symmetric, and positive
definite (⟨x , x⟩ > 0 for all x ̸= 0). In some contexts, particularly if H
has finite dimension, the scalar product is also denoted by x · y .

Then H is a normed space, with ||x || = +
√
⟨x , x⟩. In this case the

triangle inequality ||x + x ′|| ⩽ ||x ||+ ||x ′|| has the property that it is an
equality if an only if either x = 0 or x ′ = λx with λ ∈ R+.

If this normed space is complete, then we say that H is a Hilbert
space.

Obviously, any Hilbert space is a Banach space.

Example. The space L2(X) is a Hilbert space, with
⟨f , g⟩ =

∫
X
f (x)g(x)dµ(x), and ℓ2, with ⟨a, b⟩ =

∑
k⩾1 akbk .
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Background Hilbert space

Fact. If H is a finite dimensional subspace of a Hilbert space H, then
H = H ⊕ H⊥, where H⊥ = {h′ ∈ H | ⟨h, h′⟩ = 0 ∀h ∈ H}.

This means that for any h ∈ H there is a unique decomposition
h = ĥ + h′ with ĥ ∈ H and h′ ∈ H⊥.

Since ⟨h, h⟩ = ⟨ĥ, ĥ⟩+ ⟨h′, h′⟩ (as ⟨ĥ, h′⟩ = 0), we have (Pythagoras)

||h||2 = ||ĥ||2 + ||h′||2.

H
h

ĥ

h′

||h||2 = ||ĥ||2 + ||h′||2

Remark. The stament about H is valid for any closed vector subspace
of H, a condition that is automatically satisfied when the dimension
of H is finite.
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RKHS Definition

If κ : X×X → R is a kernel, and x ∈ X, we will write κx : X → R to
denote the function defined by κx(x

′) = κ(x , x ′).

If H is a Hilbert space of functions f : X → R, we say that κ is a
reproducing kernel for H if κx ∈ H for all x ∈ X and f (x) = ⟨κx , f ⟩
for all f ∈ H and x ∈ X (reproducing property).

In particular we have

κ(x , x ′) = κ(x ′, x) = κx ′(x) = ⟨κx , κx ′⟩.

This means that we can regard H as a feature space, the map
ϕ : X → H, x 7→ κx , as a feature map, and κ = κϕ as the kernel
associated to ϕ.

We will often write ϕ(x) instead of κx , particularly when this helps in
the readability of expressions.

Remark. The condition f (x) = ⟨κx , f ⟩ implies that the evaluation
map vx : H → R, f 7→ f (x), is continuous for any given x ∈ X.
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RKHS Scalar product in terms of the kernel

Given points x1, . . . , xm ∈ X and scalars λ1, · · · , λm, we can consider
the function f =

∑m
i=1 λiϕ(x

i) ∈ H.

If f ′ =
∑m′

j=1 λ
′
jϕ(x

′j) ∈ H is another such function

(x ′1, · · · , x ′m′ ∈ X), the inner product ⟨f , f ′⟩ is equal to∑
i ,j

λiλ
′
j⟨ϕ(x i), ϕ(x ′

j
)⟩ =

∑
i ,j

λiλ
′
jκ(x

i , x ′j).

If f is as above and f ′ = κx = ϕ(x), then

⟨ϕ(x), f ⟩ =
∑

i λi⟨ϕ(x), ϕ(x i)⟩ =
∑

i λiκ(x , x
i) =

∑
i λiϕ(x

i)(x) =
f (x), which ratifies the reproducing property for this particular
f ∈ H.

Notation. The subspace of H spanned by the functions ϕ(x) = κx ,
x ∈ X, will be denoted by H0.

Note that H0, and its inner product, only depend on κ.
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RKHS Existence

Theorem. Let κ be a kernel on X. Then there exists a Hilbert space
H and a mapping ϕ : X → H such that κ(x , x ′) = ⟨ϕ(x), ϕ(x ′)⟩ for
all x , x ′ ∈ X.

Proof. Let Vκ be the vector subspace of RX spanned by the functions
ϕ(x) = κx . The elements of Vκ are finite linear combinations of the
form h =

∑
x∈F λxϕ(x), where F ⊆ X is finite.

Endow Vκ with the inner product ⟨h, h′⟩, h′ =
∑

x ′∈F ′ λ′
x ′ϕ(x

′):

(∗) ⟨h, h′⟩ =
∑

x∈F
∑

x ′∈F ′ λxλ
′
x ′κ(x , x

′).

This expression only depends on h and h′, and not on the linear
combinations used to represent them. For example, the right hand
side of (∗) is equal to∑

x∈F λx

(∑
x ′∈F ′ λ′

x ′ϕ(x
′)(x)

)
=
∑

x∈F λxh
′(x), and this shows that

it only depends on h′. Similarly, we have∑
x ′∈F ′ λ′

x ′

(∑
x∈F λxκx(x

′)
)
=
∑

x ′∈F ′ λ′
x ′h(x

′).
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RKHS Existence

Reproducing property for Vκ: ⟨ϕ(x), h′⟩ = h′(x).

Semi-positivity. Let x1, · · · , xm ∈ X and h =
∑m

i=1 λiϕ(x
i) ∈ Vκ.

Then ⟨h, h⟩ =
∑

i ,j λiλjκ(x
i , x j), which is ⩾ 0 by the definition of

Mercer kernel.

Let H be the completion of Vκ. It is a Hilbert space.

For any fixed x ∈ X, the evaluation map vx : Vκ → R is continuous,
for vx(h) = ⟨κx , h⟩ and we can appeal to the Cauchy-Schwarz
inequality |⟨κx , h⟩| ⩽

√
κ(x , x)||h||. So ⟨κx , h⟩ is well defined for any

h ∈ H.

Now if hn ∈ Vκ is a Cauchy sequence and limn↑∞ = h ∈ H, then
⟨κx , h⟩ = ⟨κx , limn↑∞ hn⟩ = limn↑∞⟨κx , hn⟩ = limn↑∞ hn(x) = h(x),
which is the reproducing property.

The Hilbert space constructed in the above proof is the RKHS
associated to κ.
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Kernel studio
Product of kernels

Kernel normalization
The Gaussian kernels
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Kernel studio Product of kernels

The product of two kernels is a kernel. Let κ and κ′ be two kernels
on X. Let K and K ′ be the kernel matrices of κ and κ′ relative to the
same set of m points of X. Then the kernel matrix of κκ′, relative to
the same m points, is [KijK

′
ij ]ij . To prove that κκ′ is a kernel we have

to check that for any λ1, · · · , λm ∈ R we have
∑

ij λiλjKijK
′
ij ⩾ 0.

To see this, we will use that the semi-positive matrix K can be
expressed in the form K = MMT for some M ∈ R(m) (Cholesky
decomposition; see [16, § I.7]). Then we have∑

ij

λiλjKijK
′
ij =

∑
ij

λiλj

([ m∑
k=1

MikMjk

]
K ′

ij

)

=
m∑

k=1

(∑
i ,j

(λiMik)(λjMjk)K
′
ij

)
⩾ 0.

In the last step we use that K ′ is semi-positive, and hence, with
λ′
i = λiMik ,

∑
ij λ

′
iλ

′
jK

′
ij ⩾ 0.
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Kernel studio Kernel normalization

Given x1, · · · , xm ∈ X, let us check that the matrix K̄ =
(
κ̄(x i , x j)

)
is semi-positive.

For any λ1, · · · , λm ∈ R, we need to show that

(∗)
∑

i ,j λiλj κ̄(x
i , x j) ⩾ 0.

If κ(x i , x i) = 0, then κ̄(x i , x j) = 0 for all j ∈ [m] (by definition of κ̄).
So we may assume that κ(x i , x i) ̸= 0 for all j ∈ [m].

To ease notation, set hi = κx i . Then κ̄(x i , x j) = ⟨hi , hj⟩/||hi ||||hj ||,
where the scalar produt and the norms are relative to the RKHS
associated to κ, and the value of (∗) is∑

i ,j λiλj
⟨hi , hj⟩
||hi ||||hj ||

=

〈∑
i λi

hi
||hi ||

,
∑

j λj
hj
||hj ||

〉
⩾ 0.
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Kernel studio Gaussian kernels

We have defined the Gaussian kernel by the expression e−
||x−x′||2

2σ2 ,
x , x ′ ∈ Rn.

It is a kernel because it is the normalization κ̄ of the kernel

κ(x , x ′) = e
x·x′
σ2 .

Indeed, κ(x , x) = e
||x||2

σ2 . Similarly, κ(x ′, x ′) = e
||x′||2

σ2 . Therefore

κ̄(x , x ′) =
e

x·x′
σ2

e
||x||2
2σ2 e

||x′||2
2σ2

= e
1

2σ2 (2x ·x ′−||x ||2−||x ′||2) = e−
||x−x′||2

2σ2 .
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Feature’s studio Polynomial feature maps

Let J be the set of length n sequences of non-negative integers
J = j1, · · · , jn, and set |J | = j1 + · · ·+ jn.

If J ∈ J and x ∈ Rn, let xJ = x j11 · · · x jnn (a monomial of degree |J |).

Let N = Nn,d be the dimension of the space of polynomials of degree
d in n variables. Then we have a feature map ϕ : Rn → RN such that
ϕ(x)J = xJ .

Remark. A degree d polynomial map p : Rn → R can be written in
the form p(x) =

∑d
r=0

∑
|J|=r wJx

J = w · ϕ(x), where w ∈ RN is the
vector whose components are the scalars wJ .

Remark. By imposing further restrictions on the J used in the
definition of p(x), we can get polynomial feature spaces of lower
dimension. For example, p(x) =

∑
|J|=d wJx

J lies in the space of

homogeneous polynomials of degree d . Its dimension is
(
d+n−1

d

)
.

In algebraic geometry, this is known as the Veronese mapping.
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Feature’s studio Feature map of the polynomial kernel

The polynomial kernel of degree d in Rn is given by
κ(x , x ′) = (1 + x · x ′)d . So we know that there is a feature map
ϕ : Rn → H such that κ(x , x ′) = ⟨ϕ(x), ϕ(x ′)⟩.

To find an explicit expression for H and ϕ, define, for any x ∈ Rn

and any sequence J = j1, · · · , jd in {0, 1, · · · , n}, xJ = xj1 · · · xjd with
the convention that x0 = 1. Then we can consider the vector
ϕ(x) ∈ R(n+1)d whose coordinates are the monomials xJ .

Claim. κ(x , x ′) = ⟨ϕ(x), ϕ(x ′)⟩.

Indeed, ⟨ϕ(x), ϕ(x ′)⟩ =
∑

J xJx
′
J =

∑
J xj1x

′
j1
· · · xjdx ′jd , while

κ(x , x ′) = (1 + x · x)d = (x0x
′
0 + x1x

′
1 + · · ·+ xnx

′
n)

d , and it is clear
that both expressions coincide (by the distributive property of the
product).
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Feature’s studio Feature map of the Gaussian kernel

The Gaussian kernel in Rn has the form κ(x , x ′) = e−
||x−x′||2

2σ2 .

With similar notations as in the polynomial kernel (preceding slide),

let ϕ(x)J =
1√
k!
e−

||x||2

2σ2 xJ
σk , now with J = j1, · · · , jk ∈ {1, · · · , n} (so

k = |J |). Let S be the space of real sequences indexed by the J , in
some order. Then we have ϕ : Rn → S.

Claim. For all x , x ′ ∈ Rn, κ(x , x ′) =
∑

J ϕ(x)Jϕ(x
′)J .

Indeed, the sum on the right hand side can be expressed as

e−
||x||2

2σ2 e−
||x′||2

2σ2
∑

k⩾0
1
k!

1
σ2k

∑
|J|=k xJx

′
J . But

∑
|J|=k xJx

′
J = (x · x ′)k and

therefore
∑

k⩾0
1
k!

1
σ2k

∑
|J|=k xJx

′
J =

∑
k⩾0

1
k!
( x ·x

′

σ2 )
k = e

x·x′
σ2 . Finally,

e−
||x||2

2σ2 e−
||x′||2

2σ2 e
x·x′
σ2 = e

1
2σ2 (−||x ||2−||x ||2+2x ·x ′) = e−

||x−x′||2

2σ2 .

Remark. The proof shows that ϕ(x) ∈ ℓ2, so that actually
ϕ : Rn → ℓ2 ⊂ S.
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Learning with kernels A basic scheme

The basic scheme to approach a learning task on X by means of
kernels κ can be described as follows:

(1) Choose a feature space H and a feature map ϕ : X → H.

(2) Morph the labeled dataset D = {(x1, y 1), · · · , (xm, ym)} to the
dataset D̄ = {(ϕ(x1), y 1), · · · , (ϕ(xm), ym)}.

(3) Train a (linear) predictor h̄ : H → Y over D̄.

(4) Return the predictor ĥ : X → Y such that ĥ(x) = h̄(ϕ(x)).

Example. X = R. Task: learning a polynomial p(t) =
∑d

j=0 wjt
j ,

t ∈ R, of degree d from a labeled dataset
D = {(t1, p1), · · · , (tm, pm)}.

Let H = Rd+1 and ϕ(t) = (1, t, · · · , td). Learning p(t) is morphed
into learning the linear map H → R, x 7→ w · x
(w = (w0,w1, · · · ,wd)) from the dataset
D̄ = {(ϕ(t1), p1), · · · , (ϕ(tm), pm)}.

And similarly for multivariate polynomials.S. Xambó (UPC & IMTech) AL&DNN 13/10/2021 38 / 56



Learning with kernels The representer theorem

Theorem. Let κ be a kernel on X, H its corresponding RKHS. Let
x1, · · · , xm ∈ X, set hi = ϕ(x i) = κx i , and H = ⟨h1, · · · , hm⟩. Let
σ : R → R be a non-decreasing function and L : Rm → R ⊔ {∞} an
arbitray function. Then the optimization problem

min
h∈H

L̄(h) = σ(||h||) + L(h(x1), · · · , h(xm)) (2)

admits a solution of the form ĥ =
∑m

i=1 λihi , λ1, · · · , λm ∈ R.
Moreover, if σ is increasing, then any solution has this form.

Proof. For any h ∈ H, we have a unique decomposition h = ĥ + h′,
with ĥ ∈ H and h′ ∈ H⊥. Then h(x i) = ⟨h, hi⟩ = ⟨ĥ, hi⟩ = ĥ(x i) and
hence L(h(x1), · · · , h(xm)) = L(ĥ(x1), · · · , ĥ(xm)). Since σ is

non-decreasing, σ(||ĥ||) ⩽ σ(
√

||ĥ||2 + ||h′||2) = σ(||h||). We conclude

that L̄(ĥ) ⩽ L̄(h), and this implies the first part of the theorem.

For the second part, note that if h′ ̸= 0, then L̄(ĥ) < L̄(h). So h
cannot be a solution unless h = ĥ.
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Learning with kernels The kernel trick

In terms of the expression ĥ =
∑m

i=1 λihi =
∑m

i=1 λiκx i for minimizers

of (2), we have ĥ(x j) =
∑m

i=1 λiκx i (x
j) =

∑m
i=1 λiκ(x

i , x j). Similarly,

||ĥ||2 =
∑m

i ,j=1 λiλjκ(x
i , x j) Consequently, solving (2) is equivalent to

solving

min
λ

L

(
m∑
i=1

λiκ(x
i , x1), · · · ,

m∑
i=1

λiκ(x
i , xm)

)

+ σ

√√√√ m∑
i ,j=1

λiλjκ(x i , x j)

 . (3)

Aside from L and σ, this problem only involves knowledge of the
kernel matrix K , and a solution λ yields the predictor

h̄(x) =
∑m

j=1 λjκ(x
j , x),

which is optimal, given the data. It is a weighted sum of the
functions κx j (x), which again only involve knowledge of the kernel.
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Learning with kernels Example: SVM

Recall what we saw on 10-05, part 2, pp. 43 and 44:

The optimization problem was

minw ,b
1
2
||w ||2 ⋏ y j(w · x j + b) ⩾ 1, j ∈ [m].

The constraints gj(w , b) = 1− y j(w · x j + b) ⩽ 0 are affine in w , b,
hence qualified. So the problem has a unique solution, which was
found as an application of KKT theorem to the Lagrangian

L(w , b, u) = 1
2
||w ||2 −

∑
j∈[m] uj

(
y j(w · x j + b)− 1

)
:

(a) w =
∑

j∈[m] ujy
jx j .

(b)
∑

j∈[m] ujy
j = 0.

(c) For all j ∈ [m], uj = 0 ∨ y j(w · x j + b) = 1.
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Learning with kernels Example: SVM

The solution w is a linear combination of the x j such that uj ̸= 0.
They belong to the marginal hyperplanes, as w · x j + b = y j = ±1,
and are called support vectors. They suffice to construct the
maximal-margin hyperplane, as we also have, for any support vector
xk , b = y k − w · xk = y k −

∑m
j=1 ujy

j(x j · xk).

Duality. On plucking the expression w =
∑

j∈[m] ujy
jx j into the

Lagrangian we find, after some algebra with the KKT conclusions,
that

L =
∑

j∈[m] uj −
1
2

∑
j ,j ′ ujuj ′y

jy j ′(x j · x j ′)

Thus the dual problem, which we know is equivalent to the primal
problem, is:

d∗ = maxu∈Rm
+

(∑
j∈[m] uj −

1
2

∑
j ,j ′ ujuj ′y

jy j ′(x j · x j ′)
)

⋏ u ⩾ 0 ∧
∑

j∈[m] ujy
j = 0.
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Learning with kernels Example: Soft SVM

If the data are not linearly separable, it cannot be assumed that
y j(w · x j + b) ⩾ 1 for all j ∈ [m].

In view of applying optimization tools, introduce non-negative slack
variables t1, . . . , tn and consider the relaxed constraints
y j(w · x j + b) ⩾ 1− tj .

In this situation, a convenient function to be minimized is

1
2
||w ||2 + λ

∑m
j=1 tj ,

where λ ∈ R+ is a constant that balances the norm ||w ||, and hence
the margin 1/||w ||, and the total slack t1 + · · ·+ tm.
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Learning with kernels Example: Soft SVM

tjtj′

w · x+ b = 0

w · x+ b = −1

w · x+ b = +1

The solution w · x + b = 0 defines a margin 1/||w || and the margin
hyperplanes w · x + b = +1 and w · x + b = −1. Points x j satisfying
the hard constraints y j(w · x j + b) ⩾ 1 are correctly classified.
Otherwise they are outliers. Outliers satisfying 0 < y j(w · x j + b) < 1
are correctly classified, but they lie inside the margin ribbon (the
corresponding slack variable is less than the margin).
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Learning with kernels Example: Soft SVM

The slack, or soft SVM problem is equivalent to the optimization

minw ,b,t

(
1
2
||w ||2 + λ

∑m
j=1 tj

)
⋏ y j(w ·x j+b) ⩾ 1−tj , tj ⩾ 0, j ∈ [m],

where t = t1, · · · , tm.

There are two sets of Lagrange variables: u = u1, · · · , um for the
slack constraints, and s = s1, · · · , sm for the tj ⩾ 0. This leads to the
Lagrangian

L(w , b, t; u, s)=
1

2
||w ||2 + λ

m∑
j=1

tj

−
m∑
j=1

uj [y
j(w · x j + b)− 1 + tj ]−

m∑
j=1

sjtj .

Theorem. The solution of the soft SVM is given by the following
equations:

S. Xambó (UPC & IMTech) AL&DNN 13/10/2021 45 / 56



Learning with kernels Example: Soft SVM

∇wL = w −
∑m

j=1 ujy
jx j = 0 ⇒ (1) w =

∑m
j=1 ujy

jx j .

∇bL = −
∑m

j=1 ujy
j = 0 ⇒ (2)

∑m
j=1 ujy

j = 0

∇tjL = λ− uj − sj = 0 ⇒ (3) uj + sj = λ

uj [y
j(w · x j + b)− 1 + tj ] = 0 ⇒ (4) uj = 0 ∨ y j(w · x j + b) = 1− tj

sjtj = 0 ⇒ (5) sj = 0 ∨ tj = 0

Proof. A straightfoward application of the KKT theorem.

In the expression (1) of w as a linear combination of x1, · · · , xm, only
the tems with uj ̸= 0 matter (support vectors) and by (4) these terms
satisfy y j(w · x j + b) = 1− tj . If tj = 0, then y j(w · x j + b) = 1 and
x j lies on the corresponding marginal plane, as in the hard SVM. If
tj > 0, then x j is an outlier. In this case (5) says that sj = 0 and by
(3) uj = λ. In other words, a support vector x j is either an outlier, in
which case uj = λ, or lies on the corresponding marginal hyperplane.
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Learning with kernels Example: Dual soft SVM

Theorem. The dual of the soft SVM is equivalent to the optimization
problem

maxu
∑m

j=1 uj −
1
2

∑m
i ,j=1 uiujy

iy j(x i · x j)
⋏ 0 ⩽ uj ⩽ λ (j ∈ [m]),

∑m
j=1 ujy

j = 0.

Proof. Plugging the expression w =
∑m

j=1 ujy
jx j into the Lagrangian,

together with algebraic manipulations using the other four KKT
equations, we get the same dual Lagrangian as for the hard case,∑m

j=1 uj −
1
2

∑m
i ,j=1 uiujy

iy j(x i · x j)

but in addtion to uj ⩾ 0, we also have to take into account the
condition sj ⩾ 0, which is equivalent (by uj + sj = λ) to uj ⩽ λ.
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Learning with kernels Kernel SVMs

Since in the SVM equations the data x1, · · · , xm only appear in inner
products x i · x j , the kernel trick allows us to replace these inner
products by any kernel on X, now not necessarily of vector type.

For example, the kernel version of the dual soft SVM is the problem

maxu
∑m

j=1 uj −
1
2

∑m
i ,j=1 uiujy

iy jκ(x i , x j)

⋏ 0 ⩽ uj ⩽ λ (j ∈ [m]),
∑m

j=1 ujy
j = 0.

Implicitely, we run a SVM algorithm (hard or soft) in the feature
space of κ.

This algorithm delivers a hyperplane separator in the feature space,
which in the original set X becomes a highly non linear decision rule,
or decision boundary.

The kernel trick guarantees that no operations are performed in the
feature space, but only in the original set X.
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Learning with kernels Kernel SVMs

Remark. The analysis of the SVMs presented above has not applied
the kernel trick theorem (representer theorem) to derive that the
predictors are linear combinations of the functions κ(x j , x), j ∈ [m],
nor to establish the optimization problem by which they are governed.

Instead, we have followed the (explicit) path offered by the KKT
theory.

But we could of course follow the first approach.

In the case of the slack SVM, for example, the σ in the representer
theorem would be σ(t) = 1

2
t2, which is strictly increasing for t ⩾ 0

and σ(||h||) = 1
2
||h||2. On the other hand, the functon

L(h(x1), · · · , h(xm)) would be
∑m

j=1max(0, 1− y jh(x j)) (the hinge
loss).

For details, including sharp prescriptions of the algorithmic
computations, see [6, § 15.2].
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Learning with kernels Further topics and remarks

[4] —Kernel methods for pattern analysis:

Canonical Correlation Analysis, CCA (p. 169 and § 6.5);
kernel graph (p. 305);
kernel perceptron

(see also WP, Kernel perceptron and Kernel method)
Kernel PCA (p. 150) —there is also a kernel SVD;
Theorem 7.30 (p. 222) —a bound on the generalization error.

[17]: The journey of graph kernels through two decades
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Learning with kernels The computational side

Google Colabs

(In collaboration with Eduardo U. Moya, WiP)

PCA

Linear regression

Polynomial regression

Kernel learning
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Learning with kernels The computational side
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