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1 One-dimensional Gaussian analysis

Consider the probability space (R,B(R), γ), where

• γ = N(0, 1) is the standard Gaussian probability on R with density

p(x) =
1√
2π
e−x

2/2, x ∈ R.

• The probability of any interval [a, b] is given by

γ([a, b]) =
1√
2π

∫ b

a
e−x

2/2dx.

We are going to introduce two basic differential operators. For any f ∈ C1(R) we define:

• Derivative operator: Df(x) = f ′(x).

• Divergence operator: δf(x) = xf(x)− f ′(x).

Denote by Ckp (Rm) the space of functions f : Rm → R, which are k times continuously

differentiable, and such that for some N ≥ 1, |f (k)(x)| ≤ C(1 + |x|N ).

Lemma 1.1. The operators D and δ are adjoint with respect to the measure γ. That means,
for any f, g ∈ C1

p(R), we have

〈Df, g〉L2(R,γ) = 〈f, δg〉L2(R,γ) .

Proof. Integrating by parts and using p′(x) = −xp(x) we get∫
R
f ′(x)g(x)p(x)dx = −

∫
R
f(x)(g(x)p(x))′dx

= −
∫
R
f(x)g′(x)p(x)dx+

∫
R
f(x)g(x)xp(x)dx

=

∫
R
f(x)δg(x)p(x)dx.

Lemma 1.2 (Heisenberg’s commutation relation). Let f ∈ C2(R). Then

(Dδ − δD)f = f

Proof. We can write

Dδf(x) = D(xf(x)− f ′(x)) = f(x) + xf ′(x)− f ′′(x)

and, on the other hand,
δDf(x) = δf ′(x) = xf ′(x)− f ′′(x).

This completes the proof.
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More generally, if f ∈ Cn(R) for n ≥ 2, we have

(Dδn − δnD)f = nδn−1f

Proof. Using induction on n, we can write

Dδnf = Dδ(δn−1f) = δD(δn−1f) + δn−1f

= δ
[
δn−1Df + (n− 1)δn−2f

]
+ δn−1f = δnDf + nδn−1f.

Next we will introduce the Hermite polynomials. Define H0(x) = 1, and for n ≥ 1 put
Hn(x) = δn1. In particular, for n = 1, 2, 3, we have

H1(x) = δ1 = x

H2(x) = δx = x2 − 1

H3(x) = δ(x2 − 1) = x3 − 3x.

We have the following formula for the derivatives of the Hermite polynomials:

H ′n = nHn−1

In fact,
H ′n = Dδn1 = δnD1 + nδn−11 = nHn−1.

Proposition 1.1. The sequence of normalized Hermite polynomials { 1√
n!
Hn, n ≥ 0} form a

complete orthonormal system of functions in the Hilbert space L2(R, γ).

Proof. For n,m ≥ 0, we can write∫
R
Hn(x)Hm(x)p(x)dx =

{
n! if n = m

0 if n 6= m

Indeed, using the properties of Hermite polynomials, we obtain∫
R
Hn(x)Hm(x)p(x)dx =

∫
R
Hn(x)δm1(x)p(x)dx

=

∫
R
H ′n(x)δm−11(x)p(x)dx

= n

∫
R
Hn−1(x)Hm−1(x)p(x)dx.

To show completeness, it suffices to prove that if f ∈ L2(R, γ) is orthogonal to all Hermite
polynomials, then f = 0. Because the leading coefficient of Hn(x) is 1, we have that f is
orthogonal to all monomials xn. As a consequence, for all t ∈ R,∫

R
f(x)eitxp(x)dx =

∞∑
n=0

(it)n

n!

∫
R
f(x)xnp(x)dx = 0.
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We can commute the integral and the series because

∞∑
n=0

∫
R

|tx|n

n!
|f(x)|p(x)dx =

∫
R
e|tx||f(x)|p(x)dx

≤
[∫

R
f2(x)p(x)dx

∫
R
e2|tx|p(x)dx

] 1
2

<∞.

Therefore, the Fourier transform of fp is zero, so fp = 0, which implies f = 0. This completes
the proof.

For each a ∈ R, we have the following series expansion, which will play an important role.

∞∑
n=0

an

n!
Hn(x) = eax−

a2

2 . (1)

Proof of (1): In fact, taking into account that Hn = δn1 and that δn is the adjoint of Dn, we
obtain

eax =
∞∑
n=0

1

n!
〈ea·, Hn〉L2(R,γ)Hn(x)

=

∞∑
n=0

1

n!
〈ea·, δn1〉L2(R,γ)Hn(x)

=
∞∑
n=0

1

n!
〈Dn(ea·), 1〉L2(R,γ)Hn(x)

=
∞∑
n=0

an

n!
〈ea·, 1〉L2(R,γ)Hn(x).

Finally,

〈ea·, 1〉L2(R,γ) =
1√
2π

∫
R
eax−

x2

2 dx = e
a2

2 .

and (1) holds true.
Let us now define the Ornstein Uhlenbeck operator, which is a second order differential

operator. For f ∈ C2(R) we set

Lf(x) = −xf ′(x) + f ′′(x).

This operator has the following properties.
1. Lf = −δDf .
Proof:

δDf(x) = δf ′(x) = xf ′(x)− f ′′(x).

2. LHn = −nHn, that is, Hn is an eigenvector of L with eigenvalue −n.
Proof:

LHn = −δDHn = −δH ′n = −nδHn−1 = −nHn.
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The operator L is the infinitesimal generator of the Ornstein-Uhlenbeck semigroup. Con-
sider the semigroup of operators {Pt, t ≥ 0} on L2(R, γ), defined by PtHn = e−ntHn, that
is,

Ptf =
∞∑
n=0

1

n!
〈f,Hn〉L2(R,γ)e

−ntHn.

Then, L is the generator of Pt, that is, dPt
dt = LPt.

Proposition 1.2 (Mehler’s formula). For any function f ∈ L2(R, γ), we have the following
formula for the Ornstein-Uhlenbeck semigroup:

Ptf(x) =

∫
R
f(e−tx+

√
1− e−2ty)p(y)dy = E[f(e−tx+

√
1− e−2tY )],

where Y is a N(0, 1) random variable.

Proof. Set P̃tf(x) =
∫
R f(e−tx+

√
1− e−2ty)p(y)dy.

(i) We will first show that Pt and P̃t are contraction operators on L2(R, γ). Indeed,

‖Ptf‖2L2(R,γ) =
∞∑
n=0

1

n!
〈f,Hn〉2L2(R,γ)e

−2nt ≤ ‖f‖2L2(R,γ),

and

‖P̃tf‖2L2(R,γ) =

∫
R

(∫
R
f(e−tx+

√
1− e−2ty)p(y)dy

)2

p(x)dx

≤
∫
R2

f2(e−tx+
√

1− e−2ty)p(y)p(x)dydx

= E[f2(e−tX +
√

1− e−2tY )] = ‖f‖2L2(R,γ),

where X and Y are independent N(0, 1)-random variables.

(ii) The functions {eax, a ∈ R} form a total system in L2(R, γ). So, it suffices to show that
Pte

a· = P̃te
a· for each a ∈ R. We have

(P̃te
a·)(x) = E

[
eaxe

−t+aY
√

1−e−2t
]

= eaxe
−t
e
a2

2
(1−e−2t)

= e
a2

2 eaxe
−t− 1

2
a2e−2t

= e
a2

2

∞∑
n=0

ane−nt

n!
Hn(x)

= e
a2

2 Pt

( ∞∑
n=0

an

n!
Hn

)
(x) = e

a2

2 Pt

(
ea·−

a2

2

)
(x)

= (Pte
a·)(x).

This completes the proof of the proposition.
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The Ornstein-Uhlenbeck semigroup has the following propreties:

1. ‖Ptf‖Lp(R,γ) ≤ ‖f‖Lp(R,γ) for any p ≥ 2.

Proof: Using Mehler’s formula and Hölder’s inequality, we can write

‖Ptf‖pLp(R,γ) =

∫
R

∣∣∣∣∫
R
f(e−tx+

√
1− e−2ty)p(y)dy

∣∣∣∣p p(x)dx

≤
∫
R2

|f(e−tx+
√

1− e−2ty)|pp(y)p(x)dydx

= E[|f(e−tX +
√

1− e−2tY )|p] = ‖f‖pLp(R,γ).

2. P0f = f and P∞f = limt→∞ Ptf =
∫
R f(y)p(y)dy.

3. DPtf = e−tPtDf .

4. f ≥ 0 implies Ptf ≥ 0.

5. For any f ∈ L2(R, γ) we have

f(x)−
∫
R
fdγ = −

∫ ∞
0

LPtf(x)dt.

Proof:

f(x)−
∫
R
fdγ =

∞∑
n=1

1

n!
〈f,Hn〉L2(R,γ)Hn(x)

=
∞∑
n=1

1

n!
〈f,Hn〉L2(R,γ)

(∫ ∞
0

ne−ntHn(x)dt

)

=

∫ ∞
0

( ∞∑
n=1

1

n!
〈f,Hn〉L2(R,γ)(−LPtHn)(x)

)
dt

= −
∫ ∞

0
LPtf(x)dt.

Proposition 1.3 (First Poincaré inequality). For any f ∈ C1
p(R),

Var(f) ≤ ‖f ′‖2L2(R,γ)

Proof. Set f̄ =
∫
R fdγ. We can write

Var(f) =

∫
R
f(x)(f(x)− f̄)p(x)dx

= −
∫ ∞

0

∫
R
f(x)LPtf(x)p(x)dxdt

=

∫ ∞
0

∫
R
f(x)δDPtf(x)p(x)dxdt

=

∫ ∞
0

e−t
∫
R
f ′(x)Ptf

′(x)p(x)dxdt

≤
∫ ∞

0
e−t‖f ′‖L2(R,γ)‖Ptf ′‖L2(R,γ)dt

≤ ‖f ′‖2L2(R,γ).
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This result as the following interpretation. If f ′ is small, f is concentrated around its
mean value f̄ =

∫
R f(x)p(x)dx because

Var(f) =

∫
R

(f(x)− f̄)2p(x)dx.

The result can be extended to the Sobolev space

D1,2 = {f : f, f ′ ∈ L2(R, γ)}

defined as the completion of C1
p(R) by the norm ‖f‖21,2 = ‖f‖2L2(R,γ) + ‖f ′‖2L2(R,γ).

1.1 Finite-dimensional case

We consider now the finite-dimensional case. That is, the probability space (Ω,F , P ) is
such that Ω = Rn, F = B(Rn) is the Borel σ-field of Rn, and P is the standard Gaussian
probability with density p(x) = (2π)−n/2e−|x|

2/2. In this framework we consider, as before,
two differential operators. The first is the derivative operator, which is simply the gradient of
a differentiable function F : Rn → R:

∇F =

(
∂F

∂x1
, . . . ,

∂F

∂xn

)
.

The second differential operator is the divergence operator and is defined on differentiable
vector-valued functions u : Rn → Rn as follows:

δ(u) =

n∑
i=1

(
uixi −

∂ui
∂xi

)
= 〈u, x〉 − div u.

It turns out that δ is the adjoint of the derivative operator with respect to the Gaussian
measure ¶. This is the content of the next proposition.

Proposition 1.4. The operator δ is the adjoint of ∇; that is,

E(〈u,∇F 〉) = E(Fδ(u))

if F : Rn → R and u : Rn → Rn are continuously differentiable functions which, together with
their partial derivatives, have at most polynomial growth.

Proof. Integrating by parts, and using ∂p/∂xi = −xip, we obtain∫
Rn
〈∇F, u〉pdx =

n∑
i=1

∫
Rn

∂F

∂xi
uipdx

=
n∑
i=1

(
−
∫
Rn
F
∂ui
∂xi

pdx+

∫
Rn
Fuixipdx

)
=

∫
Rn
Fδ(u)pdx.

This completes the proof.
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2 Malliavin calculus on the Wiener space

2.1 Brownian motion and Wiener space

Brownian motion was named after the botanist Robert Brown, who observed in a microscope
the complex and erratic motion of grains of pollen suspended in water. Brownian motion
was then rigorously defined and studied by Norbert Wiener; this is why it is also called the
Wiener process. The mathematical definition of Brownian motion is the following.

Definition 2.1. A real-valued stochastic process B = (Bt)t≥0 defined on a probability space
(Ω,F , P ) is called a Brownian motion if it satisfies the following conditions:

1. Almost surely B0 = 0.

2. For all 0 ≤ t1 < · · · < tn the increments Btn − Btn−1 , . . . , Bt2 − Bt1 are independent
random variables.

3. If 0 ≤ s < t, the increment Bt −Bs is a Gaussian random variable with mean zero and
variance t− s.

4. With probability one, the map t→ Bt is continuous.

Properties (i), (ii), and (iii) are equivalent to saying that B is a Gaussian process with
mean zero and covariance function

Γ(s, t) = min(s, t). (2)

The existence of Brownian motion can be proved in the following way: The function Γ(s, t) =
min(s, t) is symmetric and nonnegative definite because it can be written as

min(s, t) =

∫ ∞
0

1[0,s](r)1[0,t](r)dr.

Then, for any integer n ≥ 1 and real numbers a1, . . . , an,

n∑
i,j=1

aiaj min(ti, tj) =
n∑

i,j=1

aiaj

∫ ∞
0

1[0,ti](r)1[0,tj ](r)dr

=

∫ ∞
0

( n∑
i=1

ai1[0,ti](r)

)2

dr ≥ 0.

Therefore, by Kolmogorov’s extension theorem, there exists a Gaussian process with mean
zero and covariance function min(s, t). Moreover, for any s ≤ t, the increment Bt − Bs has
the normal distribution N(0, t− s). This implies that for any natural number k we have

E
(

(Bt −Bs)2k
)

=
(2k)!

2kk!
(t− s)k.

Therefore, by Kolmogorov’s continuity theorem, there exists a version of B with Hölder-
continuous trajectories of order γ for any γ < (k−1)/(2k) on any interval [0, T ]. This implies
that the paths of this version of the process B are γ-Hölder continuous on [0, T ] for any
γ < 1/2 and T > 0.

Brownian motion can be defined in the canonical probability space (Ω,F , P ) known as
the Wiener space, where
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• Ω is the space of continuous functions ω : R+ → R vanishing at the origin.

• F is the Borel σ-field B(Ω) for the topology corresponding to uniform convergence on
compact sets. One can easily show that F coincides with the σ-field generated by the
collection of cylinder sets

C = {ω ∈ Ω : ω(t1) ∈ A1, . . . , ω(tk) ∈ Ak} , (3)

for any integer k ≥ 1, Borel sets A1, . . . , Ak in R, and 0 ≤ t1 < · · · < tk.

• P is the Wiener measure. That is, P is defined on a cylinder set of the form (3) by

P (C) =

∫
A1×···×Ak

pt1(x1)pt2−t1(x2 − x1) · · · ptk−tk−1
(xk − xk−1) dx1 · · · dxk, (4)

where pt(x) denotes the Gaussian density pt(x) = (2πt)−1/2e−x
2/(2t), x ∈ R, t > 0.

The mapping P defined by (4) on cylinder sets can be uniquely extended to a probability
measure on F . This fact can be proved as a consequence of the existence of Brownian motion
on R+. Finally, the canonical stochastic process defined as Bt(ω) = ω(t), ω ∈ Ω, t ≥ 0, is a
Brownian motion.

2.2 Wiener integral

We next define the integral of square integrable functions with respect to Brownian motion,
known as the Wiener integral. We consider the set E0 of step functions

ϕt =

n−1∑
j=0

aj1(tj ,tj+1](t), t ≥ 0, (5)

where n ≥ 1 is an integer, a0, . . . , an−1 ∈ R, and 0 = t0 < · · · < tn. The Wiener integral of a
step function ϕ ∈ E0 of the form (5) is defined by∫ ∞

0
ϕtdBt =

n−1∑
j=0

aj(Btj+1 −Btj ).

The mapping ϕ→
∫∞

0 ϕtdBt from E0 ⊂ L2(R+) to L2(Ω) is linear and isometric:

E
((∫ ∞

0
ϕtdBt

)2)
=

n−1∑
j=0

a2
j (tj+1 − tj) =

∫ ∞
0

ϕ2
tdt = ‖ϕ‖2L2(R+).

The space E0 is a dense subspace of L2(R+). Therefore, the mapping

ϕ→
∫ ∞

0
ϕtdBt

can be extended to a linear isometry between L2(R+) and the Gaussian subspace of L2(Ω)
spanned by the Brownian motion. The random variable

∫∞
0 ϕtdBt is called the Wiener integral

of ϕ ∈ L2(R+) and is denoted by B(ϕ). Observe that it is a Gaussian random variable with
mean zero and variance ‖ϕ‖2L2(R+).
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2.3 Malliavin derivative

Let B = (Bt)t≥0 be a Brownian motion on a probability space (Ω,F , P ) such that F is the
σ-field generated by B. Set H = L2(R+), and for any h ∈ H, consider the Wiener integral

B(h) =

∫ ∞
0

h(t)dBt.

The Hilbert space H plays a basic role in the definition of the derivative operator. In fact,
the derivative of a random variable F : Ω→ R takes values in H, and (DtF )t≥0 is a stochastic
process in L2(Ω;H).

We start by defining the derivative in a dense subset of L2(Ω). More precisely, consider
the set S of smooth and cylindrical random variables of the form

F = f(B(h1), . . . , B(hn)), (6)

where f ∈ C∞p (Rn) and hi ∈ H.

Definition 2.2. If F ∈ S is a smooth and cylindrical random variable of the form (6), the
derivative DF is the H-valued random variable defined by

DtF =
n∑
i=1

∂f

∂xi
(B(h1), . . . , B(hn))hi(t).

For instance, D(B(h)) = h and D(Bt1) = 1[0,t1], for any t1 ≥ 0.
The derivative operator can be interpreted as a directional derivative. Consider the

Cameron-Martin space H1 ⊂ Ω, which is is the set of functions of the form ψ(t) =
∫ t

0 h(s)ds,
where h ∈ H. Then, For ant h ∈ H, 〈DF, h〉H is the derivative of F in the direction of∫ ·

0 h(s)ds:

〈DF, h〉H =

∫ T

0
htDtFdt =

d

dε
F

(
ω + ε

∫ ·
0
hsds

)
|ε=0.

For example, if F = Bt1 , then

F

(
ω + ε

∫ ·
0
hsds

)
= ω(t1) + ε

∫ t1

0
hsds,

so, 〈DF, h〉H =
∫ t1

0 hsds, and DtF = 1[0,t1](t).
The operator D defines a linear and unbounded operator from S ⊂ L2(Ω) into L2(Ω;H).

Let us now introduce the divergence operator. Denote by SH the class of smooth and cylin-
drical stochastic processes u = (ut)t≥0 of the form

ut =
n∑
j=1

Fjhj(t), (7)

where Fj ∈ S and hj ∈ H.

Definition 2.3. We define the divergence of an element u of the form (7) as the random
variable given by

δ(u) =

n∑
j=1

FjB(hj)−
n∑
j=1

〈DFj , hj〉H .
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In particular, for any h ∈ H we have δ(h) = B(h).
As in the finite-dimensional case, the divergence is the adjoint of the derivative operator,

as is shown in the next proposition.

Proposition 2.1. Let F ∈ S and u ∈ SH . Then

E(Fδ(u)) = E(〈DF, u〉H).

Proof. We can assume that F = f(B(h1) . . . , B(hn)) and

u =

n∑
j=1

gj(B(h1) . . . , B(hn))hj ,

where h1, . . . , hn are orthonormal elements in H. In this case, the duality relationship reduces
to the finite-dimensional case proved in Proposition 1.4.

We will make use of the notation DhF = 〈DF, h〉H for any h ∈ H and F ∈ S. The
following proposition states the basic properties of the derivative and divergence operators
on smooth and cylindrical random variables.

Proposition 2.2. Suppose that u, v ∈ SH , F ∈ S, and h ∈ H. Then, if (ei)i≥1 is a complete
orthonormal system in H, we have

E(δ(u)δ(v)) = E(〈u, v〉H) + E
( ∞∑
i,j=1

Dei〈u, ej〉HDej 〈v, ei〉H
)
, (8)

Dh(δ(u)) = δ(Dhu) + 〈h, u〉H , (9)

δ(Fu) = Fδ(u)− 〈DF, u〉H . (10)

Property (8) can also be written as

E(δ(u)δ(v)) = E
(∫ ∞

0
utvtdt

)
+ E

(∫ ∞
0

∫ ∞
0

DsutDtvsdsdt

)
.

Proof of Proposition 2.2. We first show property (9). Consider u =
∑n

j=1 Fjhj , where Fj ∈ S
and hj ∈ H for j = 1, . . . , n. Then, using Dh(B(hj)) = 〈h, hj〉H , we obtain

Dh(δ(u)) = Dh

( n∑
j=1

FjB(hj)−
n∑
j=1

〈DFj , hj〉H
)

=
n∑
j=1

Fj〈h, hj〉H +
n∑
j=1

(DhFjB(hj)− 〈Dh(DFj), hj〉H)

= 〈u, h〉H + δ(Dhu).

To show property (8), using the duality formula (Proposition 2.1) and property (9), we get

E(δ(u)δ(v)) = E(〈v,D(δ(u))〉H)

= E
( ∞∑
i=1

〈v, ei〉H Dei(δ(u))

)

= E
( ∞∑
i=1

〈v, ei〉H
(
〈u, ei〉H + δ(Deiu)

))

= E(〈u, v〉H) + E
( ∞∑
i,j=1

Dei〈u, ej〉H Dej 〈v, ei〉H
)
.
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Finally, to prove property (10) we choose a smooth random variable G ∈ S and write, using
the duality relationship (Proposition 2.1),

E(δ(Fu)G) = E(〈DG,Fu〉H) = E(〈u,D(FG)−GDF 〉H)

= E((δ(u)F − 〈u,DF 〉H)G),

which implies the result because S is dense in L2(Ω).

2.4 Sobolev spaces

The next proposition will play a basic role in extending the derivative to suitable Sobolev
spaces of random variables.

Proposition 2.3. The operator D is closable from Lp(Ω) to Lp(Ω;H) for any p ≥ 1.

Proof. Assume that the sequence FN ∈ S satisfies

FN
Lp(Ω)−→ 0 and DFN

Lp(Ω;H)−→ η,

as N →∞. Then η = 0. Indeed, for any u =
∑N

j=1Gjhj ∈ SH such that GjB(hj) and DGj
are bounded, by the duality formula (Proposition 2.1), we obtain

E(〈η, u〉H) = lim
N→∞

E(〈DFN , u〉H)

= lim
N→∞

E(FNδ(u)) = 0.

This implies that η = 0, since the set of u ∈ SH with the above properties is dense in Lp(Ω;H)
for all p ≥ 1.

We consider the closed extension of the derivative, which we also denote by D. The
domain of this operator is defined by the following Sobolev spaces. For any p ≥ 1, we denote
by D1,p the closure of S with respect to the seminorm

‖F‖1,p =

(
E(|F |p) + E

(∣∣∣∣ ∫ ∞
0

(DtF )2dt

∣∣∣∣p/2))1/p

.

In particular, F belongs to D1,p if and only if there exists a sequence Fn ∈ S such that

Fn
Lp(Ω)−→ F and DFn

Lp(Ω;H)−→ DF,

as n→∞. For p = 2, the space D1,2 is a Hilbert space with scalar product

〈F,G〉1,2 = E(FG) + E
(∫ ∞

0
DtFDtGdt

)
.

In the same way we can introduce spaces D1,p(H) by taking the closure of SH . The corre-
sponding seminorm is denoted by ‖ · ‖1,p,H .

The Malliavin derivative satisfies the following chain rule.

Proposition 2.4. Let ϕ : R → R be a continuous differentiable function such that |ϕ′(x)| ≤
C(1 + |x|α) for some α ≥ 0. Let F ∈ D1,p for some p ≥ α + 1. Then, ϕ(F ) belongs to D1,q,
where q = p/(α+ 1), and

D(ϕ(F )) = ϕ′(F )DF.

12



Proof. Notice that |ϕ(x)| ≤ C ′(1 + |x|α+1), for some constant C ′, which implies that ϕ(F ) ∈
Lq(Ω) and, by Hölder’s inequality, ϕ′(F )DF ∈ Lq(Ω;H). Then, to show the proposition it
suffices to approximate F by smooth and cylindrical random variables, and ϕ by ϕ∗αn, where
αn is an approximation of the identity.

We next define the domain of the divergence operator. We identify the Hilbert space
L2(Ω;H) with L2(Ω× R+).

Definition 2.4. The domain of the divergence operator Dom δ in L2(Ω) is the set of processes
u ∈ L2(Ω× R+) such that there exists δ(u) ∈ L2(Ω) satisfying the duality relationship

E(〈DF, u〉H) = E(δ(u)F ),

for any F ∈ D1,2.

Observe that δ is a linear operator such that E(δ(u)) = 0. Moreover, δ is closed; that is,
if the sequence un ∈ SH satisfies

un
L2(Ω;H)−→ u and δ(un)

L2(Ω)−→ G,

as n→∞, then u belongs to Dom δ and δ(u) = G.
Proposition 2.2 can be extended to random variables in suitable Sobolev spaces. Property

(8) holds for u, v ∈ D1,2(H) ⊂ Dom δ and, in this case, for any u ∈ D1,2(H) we can write

E(δ(u)2) ≤ E
(∫ ∞

0
(ut)

2dt

)
+ E

(∫ ∞
0

∫ ∞
0

(Dsut)
2dsdt

)
= ‖u‖21,2,H .

Property (9) holds if u ∈ D1,2(H) and Dhu ∈ Dom δ. Finally, property (10) holds if F ∈ D1,2,
Fu ∈ L2(Ω;H), u ∈ Dom δ, and the right-hand side is square integrable.

We can also introduce iterated derivatives and the corresponding Sobolev spaces. The kth
derivative DkF of a random variable F ∈ S is the k-parameter process obtained by iteration:

Dk
t1,...tk

F =
n∑

i1,...,ik=1

∂kf

∂xi1 · · · ∂xik
(B(h1), . . . , B(hn))hi1(t1) · · ·hik(tk).

For any p ≥ 1, the operator Dk is closable from Lp(Ω) into Lp(Ω;H⊗k), and we denote by
Dk,p the closure of S with respect to the seminorm

‖F‖k,p =

(
E(|F |p) + E

( k∑
j=1

∣∣∣∣ ∫
Rj+

(Dj
t1,...,tj

F )2dt1 · · · dtj
∣∣∣∣p/2))1/p

.

For any k ≥ 1, we set Dk,∞ := ∩p≥2Dk,p, D∞,2 := ∩k≥1Dk,2, and D∞ := ∩k≥1Dk,∞. Similarly,
we can introduce the spaces Dk,p(H).

2.5 The divergence as a tochastic integral

The Malliavin derivative is a local operator in the following sense. Let [a, b] ⊂ R+ be fixed.
We denote by F[a,b] the σ-field generated by the random variables {Bs −Ba, s ∈ [a, b]}.
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Lemma 2.5. Let F be a random variable in D1,2∩L2(Ω,F[a,b], P ). Then DtF = 0 for almost
all (t, ω) ∈ [a, b]c × Ω.

Proof. If F belongs to S∩L2(Ω,F[a,b], P ) then this property is clear. The general case follows
by approximation.

The following result says that the divergence operator is an extension of Itô’s integral. For
any t ≥ 0 we denote by Ft the σ-algebra generated by the null sets and the random variables
Bs, s ∈ [0, t].

Theorem 2.6. Any process u in L2(Ω × R+) which is adapted (for each t ≥ 0, ut is Ft-
measurable) belongs to Dom δ and δ(u) coincides with Itô’s stochastic integral

δ(u) =

∫ ∞
0

utdBt.

Proof. Consider a simple process u of the form

ut =
n−1∑
j=0

φj1(tj ,tj+1](t),

where 0 ≤ t0 < t1 < · · · < tn and the random variables φj ∈ S are Ftj -measurable. Then
δ(u) coincides with the Itô integral of u because, by (10),

δ(u) =

n−1∑
j=0

φj(Btj+1 −Btj )−
n−1∑
j=0

∫ tj+1

tj

Dtφjdt =

n−1∑
j=0

φj(Btj+1 −Btj ),

taking into account that Dtφj = 0 if t > tj by Lemma 2.5. Then the result follows by approx-
imating any process in L2(P) by simple processes, and approximating any φj ∈ L2(Ω,Ftj , P )
by Ftj -measurable smooth and cylindrical random variables.

If u is not adapted, δ(u) coincides with an anticipating stochastic integral introduced by
Skorohod. Using techniques of Malliavin calculus, Nualart and Pardoux developed a stochastic
calculus for the Skorohod integral.

If u and v are adapted then, for s < t, Dtvs = 0 and, for s > t, Dsut = 0. As a
consequence, property (8) leads to the isometry property of Itô’s integral for adapted processes
u, v ∈ D1,2(H):

E(δ(u)δ(v)) = E
(∫ ∞

0
utvtdt

)
.

If u is an adapted process in D1,2(H) then, from property (9), we obtain

Dt

(∫ ∞
0

usdBs

)
= ut +

∫ ∞
t

DtusdBs, (11)

because Dtus = 0 if t > s.
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2.6 Isonormal Gaussian processes

So far, we have developed the Malliavin calculus with respect to Brownian motion. In this
case, the Wiener integral B(h) =

∫∞
0 h(t)dBt gives rise to a centered Gaussian family indexed

by the Hilbert space H = L2(R+). More generally, consider a separable Hilbert space H
with scalar product 〈·, ·〉H . An isonormal Gaussian process is a centered Gaussian family
H1 = {W (h), h ∈ H} satisfying

E(W (h)W (g)) = 〈h, g〉H ,

for any h, g ∈ H. Observe that H1 is a Gaussian subspace of L2(Ω).
The Malliavin calculus can be developed in the framework of an isonormal Gaussian

process, and all the notions and properties that do not depend on the fact that H = L2(R+)
can be extended to this more general context.

3 Multiple stochastic integrals. Wiener chaos

In this section we present the Wiener chaos expansion, which provides an orthogonal de-
composition of random variables in L2(Ω) in terms of multiple stochastic integrals. We then
compute the derivative and the divergence operators on the Wiener chaos expansion.

3.1 Multiple Stochastic Integrals

Recall that B = (Bt)t≥0 is a Brownian motion defined on a probability space (Ω,F , P ) such
that F is generated by B. Let L2

s(Rn+) be the space of symmetric square integrable functions
f : Rn+ → R. If f : Rn+ → R, we define its symmetrization by

f̃(t1, . . . , tn) =
1

n!

∑
σ

f(tσ(1), . . . , tσ(n)),

where the sum runs over all permutations σ of {1, 2, . . . , n}. Observe that

‖f̃‖L2(Rn+) ≤ ‖f‖L2(Rn+).

Definition 3.1. The multiple stochastic integral of f ∈ L2
s(Rn+) is defined as the iterated

stochastic integral

In(f) = n!

∫ ∞
0

∫ tn

0
· · ·
∫ t2

0
f(t1, . . . , tn)dBt1 · · · dBtn .

Note that if f ∈ L2(R+), I1(f) = B(f) is the Wiener integral of f .
If f ∈ L2(Rn+) is not necessarily symmetric, we define

In(f) = In(f̃).

Using the properties of Itô’s stochastic integral, one can easily check the following isometry
property: for all n,m ≥ 1, f ∈ L2(Rn+), and g ∈ L2(Rm+ ),

E(In(f)Im(g)) =

{
0 if n 6= m,

n!〈f̃ , g̃〉L2(Rn+) if n = m.
(12)
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Next, we want to compute the product of two multiple integrals. Let f ∈ L2
s(Rn+) and

g ∈ L2
s(Rm+ ). For any r = 0, . . . , n ∧m, we define the contraction of f and g of order r to be

the element of L2(Rn+m−2r
+ ) defined by

(f ⊗r g) (t1, . . . , tn−r, s1, . . . , sm−r)

=

∫
Rr+
f(t1, . . . , tn−r, x1, . . . , xr)g(s1, . . . , sm−r, x1, . . . , xr)dx1 · · · dxr.

We denote by f ⊗̃r g the symmetrization of f ⊗r g. Then, the product of two multiple
stochastic integrals satisfies the following formula:

In(f)Im(g) =

n∧m∑
r=0

r!

(
n

r

)(
m

r

)
In+m−2r(f ⊗r g). (13)

The next result gives the relation between multiple stochastic integrals and Hermite poly-
nomials.

Proposition 3.1. For any g ∈ L2(R+), we have

In(g⊗n) = ‖g‖nL2(R+)Hn

(
B(g)

‖g‖L2(R+)

)
,

where g⊗n(t1, . . . , tn) = g(t1) · · · g(tn).

Proof. We can assume that ‖g‖L2(R+) = 1. We proceed by induction over n. The case n = 1
is immediate. We then assume that the result holds for 1, . . . , n. Using the product rule (13),
the induction hypothesis, and the recursive relation for the Hermite polynomials, we get

In+1(g⊗(n+1)) = In(g⊗n)I1(g)− nIn−1(g⊗(n−1))

= Hn(B(g))B(g)− nHn−1(B(g))

= Hn+1(B(g)),

which concludes the proof.

The next result is the Wiener chaos expansion.

Theorem 3.2. Every F ∈ L2(Ω) can be uniquely expanded into a sum of multiple stochastic
integrals as follows:

F = E(F ) +
∞∑
n=1

In(fn),

where fn ∈ L2
s(Rn+).

For any n ≥ 1, we denote by Hn the closed subspace of L2(Ω) formed by all multiple
stochastic integrals of order n. For n = 0, H0 is the space of constants. Observe that H1

coincides with the isonormal Gaussian process {B(f), f ∈ L2(R+)}. Then Theorem 3.2 can
be reformulated by saying that we have the orthogonal decomposition

L2(Ω) = ⊕∞n=0Hn.

Proof of Theorem 3.2. It suffices to show that if a random variable G ∈ L2(Ω) is orthogonal
to ⊕∞n=0Hn then G = 0. This assumption implies that G is orthogonal to all random variables
of the form B(g)k, where g ∈ L2(R+), k ≥ 0. This in turn implies that G is orthogonal to all
the exponentials exp(B(h)), which form a total set in L2(Ω). So G = 0.
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3.2 Derivative operator on the Wiener chaos

Let us compute the derivative of a multiple stochastic integral.

Proposition 3.2. Let f ∈ L2
s(Rn+). Then In(f) ∈ D1,2 and

DtIn(f) = nIn−1(f(·, t)).

Proof. Assume that f = g⊗n, with ‖g‖L2(R+) = 1. Then, using Proposition 3.1 and the
properties of Hermite polynomials, we have

DtIn(f) = Dt(Hn(B(g))) = H ′n(B(g))Dt(B(g)) = nHn−1(B(g))g(t)

= ng(t)In−1(g⊗(n−1)) = nIn−1(f(·, t)).

The general case follows using linear combinations and a density argument. This finishes the
proof.

Moreover, applying (12), we have

E
(∫

R+

(DtIn(f))2dt

)
= n2

∫
R+

E(In−1(f(·, t))2)dt

= n2(n− 1)!

∫
R+

‖f(·, t)‖2
L2(Rn−1

+ )
dt

= nn!‖f‖2L2(Rn+)

= nE(In(f)2). (14)

As a consequence of Proposition 3.2 and (14), we deduce the following result.

Proposition 3.3. Let F ∈ L2(Ω) with Wiener chaos expansion F =
∑∞

n=0 In(fn). Then
F ∈ D1,2 if and only if

E(‖DF‖2H) =

∞∑
n=1

nn!‖fn‖2L2(Rn+) <∞,

and in this case

DtF =
∞∑
n=1

nIn−1(fn(·, t)).

Similarly, if k ≥ 2, one can show that F ∈ Dk,2 if and only if

∞∑
n=1

nkn!‖fn‖2L2(Rn+) <∞,

and in this case

Dk
t1,...,tk

F =
∞∑
n=k

n(n− 1) · · · (n− k + 1)In−k(fn(· , t1, . . . , tk)),

where the series converges in L2(Ω× Rk+). As a consequence, if F ∈ D∞,2 then the following
formula, due to Stroock, allows us to compute explicitly the kernels in the Wiener chaos
expansion of F :

fn =
1

n!
E(DnF ). (15)
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Example 3.3. Consider F = B3
1 . Then

f1(t1) = E(Dt1B
3
1) = 3E(B2

1)1[0,1](t1) = 31[0,1](t1),

f2(t1, t2) = 1
2E(D2

t1,t2B
3
1) = 3E(B1)1[0,1](t1 ∨ t2) = 0,

f3(t1, t2, t3) = 1
6E(D3

t1,t2,t3B
3
1) = 1[0,1](t1 ∨ t2 ∨ t3),

and we obtain the Wiener chaos expansion

B3
1 = 3B1 + 6

∫ 1

0

∫ t1

0

∫ t2

0
dBt1dBt2dBt3 .

Proposition 3.3 implies the following characterization of the space D1,2.

Proposition 3.4. Let F ∈ L2(Ω). Assume that there exists an element u ∈ L2(Ω;H) such
that, for all G ∈ S and h ∈ H, the following duality formula holds:

E(〈u, h〉HG) = E(Fδ(Gh)). (16)

Then F ∈ D1,2 and DF = u.

Proof. Let F =
∑∞

n=0 In(fn), where fn ∈ L2
s(Rn+). By the duality formula (Proposition 2.1)

and Proposition 3.2, we obtain

E(Fδ(Gh)) =

∞∑
n=0

E(In(fn)δ(Gh)) =

∞∑
n=0

E(〈D(In(fn)), h〉HG)

=
∞∑
n=1

E(〈nIn−1(fn(·, t)), h〉HG).

Then, by (16), we get

∞∑
n=1

E(〈nIn−1(fn(·, t)), h〉HG) = E(〈u, h〉HG),

which implies that the series
∑∞

n=1 nIn−1(fn(·, t)) converges in L2(Ω;H) and its sum coincides
with u. Proposition 3.3 allows us to conclude the proof.

Corollary 3.4. Let (Fn)n≥1 be a sequence of random variables in D1,2 that converges to F
in L2(Ω) and is such that

sup
n

E(‖DFn‖2H) <∞.

Then F belongs to D1,2 and the sequence of derivatives (DFn)n≥1 converges to DF in the
weak topology of L2(Ω;H).

Proof. The assumptions imply that there exists a subsequence (Fn(k))k≥1 such that the se-
quence of derivatives (DFn(k))k≥1 converges in the weak topology of L2(Ω;H) to some element
α ∈ L2(Ω;H). By Proposition 3.4, it suffices to show that, for all G ∈ S and h ∈ H,

E(〈α, h〉HG) = E(Fδ(Gh)). (17)

By the duality formula (Proposition 2.1), we have

E(〈DFn(k), h〉HG) = E(Fn(k)δ(Gh)).

Then, taking the limit as k tends to infinity, we obtain (17), which concludes the proof.
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The next proposition shows that the indicator function of a set A ∈ F such that 0 <
P (A) < 1 does not belong to D1,2.

Proposition 3.5. Let A ∈ F and suppose that the indicator function of A belongs to the
space D1,2. Then, P (A) is zero or one.

Proof. Consider a continuously differentiable function ϕ with compact support, such that
ϕ(x) = x2 for each x ∈ [0, 1]. Then, by Proposition 2.4, we can write

D1A = D[(1A)2] = D[ϕ(1A)] = 21AD1A.

Therefore D1A = 0 and, from Proposition 3.3, we deduce that 1A = P (A), which completes
the proof.

3.3 Divergence on the Wiener chaos

We now compute the divergence operator on the Wiener chaos expansion. A square integrable
stochastic process u = (ut)t≥0 ∈ L2(Ω× R+) has an orthogonal expansion of the form

ut =
∞∑
n=0

In(fn(·, t)),

where f0(t) = E(ut) and, for each n ≥ 1, fn ∈ L2(Rn+1
+ ) is a symmetric function in the first

n variables.

Proposition 3.6. The process u belongs to the domain of δ if and only if the series

δ(u) =
∞∑
n=0

In+1(f̃n) (18)

converges in L2(Ω).

Proof. Suppose that G = In(g) is a multiple stochastic integral of order n ≥ 1, where g is
symmetric. Then

E(〈u,DG〉H) =

∫
R+

E
(
In−1(fn−1(·, t))nIn−1(g(·, t))

)
dt

= n(n− 1)!

∫
R+

〈fn−1(·, t), g(·, t)〉L2(Rn−1
+ ) dt

= n!〈fn−1, g〉L2(Rn+) = n!〈f̃n−1, g〉L2(Rn+)

= E(In(f̃n−1)In(g)) = E(In(f̃n−1)G).

If u ∈ Dom δ, we deduce that

E(δ(u)G) = E(In(f̃n−1)G)

for every G ∈ Hn. This implies that In(f̃n−1) coincides with the projection of δ(u) on the
nth Wiener chaos. Consequently, the series in (18) converges in L2(Ω) and its sum is equal
to δ(u). The converse can be proved by similar arguments.

19



4 Ornstein-Uhlenbeck semigroup. Meyer inequalities

In this section we describe the main properties of the Ornstein–Uhlenbeck semigroup and its
generator. We then give the relationship between the Malliavin derivative, the divergence
operator, and the Ornstein–Uhlenbeck semigroup generator.

4.1 Mehler’s formula

Let B = (Bt)t≥0 be a Brownian motion on a probability space (Ω,F , P ) such that F is
generated by B. Let F be a random variable in L2(Ω) with the Wiener chaos decomposition
F =

∑∞
n=0 In(fn), fn ∈ L2

s(Rn+).

Definition 4.1. The Ornstein–Uhlenbeck semigroup is the one-parameter semigroup (Tt)t≥0

of operators on L2(Ω) defined by

Tt(F ) =
∞∑
n=0

e−ntIn(fn).

An alternative and useful expression for the Ornstein–Uhlenbeck semigroup is Mehler’s
formula:

Proposition 4.1. Let B′ = (B′t)t≥0 be an independent copy of B. Then, for any t ≥ 0 and
F ∈ L2(Ω), we have

Tt(F ) = E′(F (e−tB +
√

1− e−2tB′)), (19)

where E′ denotes the mathematical expectation with respect to B′.

Proof. Both Tt in Definition 4.1 and the right-hand side of (19) give rise to linear contraction
operators on Lp(Ω), for all p ≥ 1. For the first operator, this is clear. For the second, using
Jensen’s inequality it follows that, for any p ≥ 1,

E(|Tt(F )|p) = E(|E′(F (e−tB +
√

1− e−2tB′))|p)

≤ E(E′(|F (e−tB +
√

1− e−2tB′)|p)) = E(|F |p).

Thus, it suffices to show (19) for random variables of the form
F = exp

(
λB(h)− 1

2λ
2
)
, where B(h) =

∫
R+
htdBt, h ∈ H, is an element of norm one, and

λ ∈ R. We have, using formula (1),

E′
(

exp

(
e−tλB(h) +

√
1− e−2tλB′(h)− 1

2λ
2

))
= exp

(
e−tλB(h)− 1

2e
−2tλ2

)
=
∞∑
n=0

e−nt
λn

n!
Hn (B(h)) = TtF,

because

F =

∞∑
n=0

λn

n!
Hn (B(h))

and Hn(B(h)) = In(h⊗n) (see Proposition 3.1). This completes the proof.
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Mehler’s formula implies that the operator Tt is nonnegative. Moreover, Tt is symmetric,
that is,

E(GTt(F )) = E(FTt(G)) =
∞∑
n=0

e−ntE(In(fn)In(gn)),

where F =
∑∞

n=0 In(fn) and G =
∑∞

n=0 In(gn).
The Ornstein–Uhlenbeck semigroup has the following hypercontractivity property

Theorem 4.2. Let F ∈ Lp(Ω), p > 1, and q(t) = e2t(p− 1) + 1 > p, t > 0. Then

‖TtF‖q(t) ≤ ‖F‖p.

As a consequence of the hypercontractivity property, for any 1 < p < q < ∞ the norms
‖ · ‖p and ‖ · ‖q are equivalent on any Wiener chaos Hn. In fact, putting q = e2t(p−1) + 1 > p
with t > 0, we obtain, for every F ∈ Hn,

e−nt‖F‖q = ‖TtF‖q ≤ ‖F‖p,

which implies that

‖F‖q ≤
(
q − 1

p− 1

)n/2
‖F‖p. (20)

Moreover, for any n ≥ 1 and 1 < p < ∞, the orthogonal projection onto the nth Wiener
chaos Jn is bounded in Lp(Ω), and

‖JnF‖p ≤

{
(p− 1)n/2‖F‖p if p > 2,

(p− 1)−n/2‖F‖p if p < 2.
(21)

In fact, suppose first that p > 2 and let t > 0 be such that p− 1 = e2t. Using the hypercon-
tractivity property with exponents p and 2, we obtain

‖JnF‖p = ent‖TtJnF‖p ≤ ent‖JnF‖2 ≤ ent‖F‖2 ≤ ent‖F‖p.

If p < 2, we have

‖JnF‖p = sup
‖G‖q≤1

E((JnF )G) ≤ ‖F‖p sup
‖G‖q≤1

‖JnG‖q ≤ ent‖F‖p,

where q is the conjugate of p, and q − 1 = e2t.
As an application we can establish the following lemma.

Lemma 4.3. Fix an integer k ≥ 1 and a real number p > 1. Then, there exists a constant
cp,k such that, for any random variable F ∈ Dk,2,

‖E(DkF )‖H⊗k ≤ cp,k‖F‖p.

Proof. Suppose that F =
∑∞

n=0 In(fn). Then, by Stroock’s formula (15), E(DkF ) = k!fk.
Therefore,

‖E(DkF )‖H⊗k = k!‖fk‖H⊗k =
√
k!‖JkF‖2.

From (20) we obtain

‖JkF‖2 ≤
(
(p− 1) ∧ 1

)−k/2‖JkF‖p.
Finally, applying (21) we get

‖JkF‖p ≤ (p− 1)sign(p−2)k/2‖F‖p,

which concludes the proof.
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The next result can be regarded as a regularizing property of the Ornstein–Uhlenbeck
semigroup.

Proposition 4.2. Let F ∈ Lp(Ω) for some p > 1. Then, for any t > 0, we have that
TtF ∈ D1,p and there exists a constant cp such that

‖DTtF‖Lp(Ω;H) ≤ cpt−1/2‖F‖p. (22)

Proof. Consider a sequence of smooth and cylindrical random variables Fn ∈ S which con-
verges to F in Lp(Ω). We know that TtFn converges to TtF in Lp(Ω). We have TtFn ∈ D1,p,
and using Mehler’s formula (19), we can write

D(Tt(Fn − Fm)) = D
(
E′((Fn − Fm)(e−tB +

√
1− e−2t)B′)

)
=

e−t√
1− e−2t

E′
(
D′((Fn − Fm)(e−tB +

√
1− e−2t)B′))

)
.

Then, Lemma 4.3 implies that

‖D(Tt(Fn − Fm))‖Lp(Ω;H) ≤ cp,1
e−t√

1− e−2t
‖Fn − Fm‖p.

Hence, DTtFn is a Cauchy sequence in Lp(Ω;H). Therefore, TtF ∈ D1,p and DTtF is the
limit in Lp(Ω;H) of DTtFn. The estimate (22) follows by the same arguments.

With the above ingredients, we can show an extension of Corollary 3.4 to any p > 1.

Proposition 4.3. Let Fn ∈ D1,p be a sequence of random variables converging to F in Lp(Ω)
for some p > 1. Suppose that

sup
n
‖Fn‖1,p <∞.

Then F ∈ D1,p.

Proof. The assumptions imply that there exists a subsequence (Fn(k))k≥1 such that the se-
quence of derivatives (DFn(k))k≥1 converges in the weak topology of Lq(Ω;H) to some element
α ∈ Lq(Ω;H), where 1/p + 1/q = 1. By Proposition 4.2, for any t > 0, we have that TtF
belongs to D1,p and DTtFn(k) converges to DTtF in Lp(Ω;H). Then, for any β ∈ Lq(Ω;H),
we can write

E(〈DTtF, β〉H) = lim
k→∞

E(〈DTtFn(k), β〉H) = lim
k→∞

e−tE(〈TtDFn(k), β〉H)

= lim
k→∞

e−tE(〈DFn(k), Ttβ〉H) = e−tE(〈α, Ttβ〉H)

= E(〈e−tTtα, β〉H).

Therefore, DTtF = e−tTtα. This implies that DTtF converges to α as t ↓ 0 in Lp(Ω;H).
Using that D is a closed operator, we conclude that F ∈ D1.p and DF = α.
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4.2 Generator of the Ornstein-Uhlenbeck semigroup

The generator of the Ornstein–Uhlenbeck semigroup in L2(Ω) is the operator given by

LF = lim
t↓0

TtF − F
t

,

and the domain of L is the set of random variables F ∈ L2(Ω) for which the above limit exists
in L2(Ω). It is easy to show that a random variable F =

∑∞
n=0 In(fn), fn ∈ L2

s(Rn+), belongs
to the domain of L if and only if

∞∑
n=1

n2‖In(fn)‖22 <∞;

and, in this case, LF =
∑∞

n=1−nIn(fn). Thus, DomL coincides with the space D2,2.
We also define the operator L−1, which is the pseudo-inverse of L, as follows. For every

F ∈ L2(Ω), set

LF = −
∞∑
n=1

1

n
In(fn).

Note that L−1 is an operator with values in D2,2 and that LL−1F = F − E(F ), for any
F ∈ L2(Ω), so L−1 acts as the inverse of L for centered random variables.

The next proposition explains the relationship between the operators D, δ, and L.

Proposition 4.4. Let F ∈ L2(Ω). Then, F ∈ DomL if and only if F ∈ D1,2 and DF ∈ Dom δ
and, in this case, we have

δDF = −LF.

Proof. Let F =
∑∞

n=0 In(fn). Suppose first that F ∈ D1,2 and DF ∈ Dom δ. Then, for any
random variable G = Im(gm), we have, using the duality relationship (Proposition 2.1),

E(GδDF ) = E(〈DG,DF 〉H) = mm!〈gm, fm〉L2(Rm+ ) = E(GmIm(fm)).

Therefore, the projection of δDF onto the mth Wiener chaos is equal to mIm(fm). This
implies that the series

∑∞
n=1 nIn(fn) converges in L2(Ω) and its sum is δDF . Therefore,

F ∈ DomL and LF = −δDF .
Conversely, suppose that F ∈ DomL. Clearly, F ∈ D1,2. Then, for any random variable

G ∈ D1,2 with Wiener chaos expansion G =
∑∞

n=0 In(gn), we have

E(〈DG,DF 〉H) =

∞∑
n=1

nn!〈gn, fn〉L2(Rn+) = −E(GLF ).

As a consequence, DF belongs to the domain of δ and δDF = −LF .

The operator L behaves as a second-order differential operator on smooth random vari-
ables.

Proposition 4.5. Suppose that F = (F 1, . . . , Fm) is a random vector whose components
belong to D2,4. Let ϕ be a function in C2(Rm) with bounded first and second partial derivatives.
Then, ϕ(F ) ∈ DomL and

L(ϕ(F )) =

m∑
i,j=1

∂2ϕ

∂xi∂xj
(F )〈DF i, DF j〉H +

m∑
i=1

∂ϕ

∂xi
(F )LF i.
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Proof. By the chain rule (see Proposition 2.4), ϕ(F ) belongs to D1,2 and

D(ϕ(F )) =
m∑
i=1

∂ϕ

∂xi
(F )DF i.

Moreover, by Proposition 4.4, ϕ(F ) belongs to DomL and L(ϕ(F )) = −δ(D(ϕ(F ))). Using
the factorization property of the divergence operator yields the result.

In the finite-dimensional case (Ω = Rn equipped with the standard Gaussian law), L =
∆−x·∇ coincides with the generator of the Ornstein–Uhlenbeck process (Xt)t≥0 in Rn, which
is the solution to the stochastic differential equation

dXt =
√

2dBt −Xtdt,

where (Bt)t≥0 is an n-dimensional Brownian motion.

4.3 Meyer’s inequality

The next theorem provides an estimate for the Lp(Ω)-norm of the divergence operator for
any p > 1. It was proved by Pisier, using the boundedness in Lp(R) of the Riesz transform.

Theorem 4.4. For any p > 1, there exists a constant cp > 0 such that for any u ∈ D1,p(H),

E(|δ(u)|p) ≤ cp
(
E(‖Du‖p

L2(R2
+)

) + ‖E(u)‖pH

)
. (23)

As a consequence of Theorem 4.4, the divergence operator is continuous from D1,p(H) to
Lp(Ω), and so we have Meyer’s inequality:

E(|δ(u)|p) ≤ cp
(
E(‖Du‖p

L2(R2
+)

) + E(‖u‖pH)
)

= cp‖u‖p1,p,H . (24)

This result can be extended as follows.

Theorem 4.5. For any p > 1, k ≥ 1, and u ∈ Dk,p(H),

‖δ(u)‖k−1,p ≤ ck,p
(
E(‖Dku‖p

L2(Rk+1
+ )

) + E(‖u‖pH)

)
= ck,p‖u‖pk,p,H .

This implies that the operator δ is continuous from Dk,p(H) into Dk−1,p(H).

5 Stochastic integral representations. Clark-Ocone formula

This section deals with the following problem. Given a random variable F in L2(Ω), with
E(F ) = 0, find a stochastic process u in Dom δ such that F = δ(u). We present two different
answers to this question, both integral representations. The first is the Clark–Ocone formula,
in which u is required to be adapted. Therefore, the process u is unique and its expression
involves a conditional expectation of the Malliavin derivative of F . The second uses the
inverse of the Ornstein–Uhlenbeck generator. We then present some applications of these
integral representations.
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5.1 Clark-Ocone formula

Let B = (Bt)t≥0 be a Brownian motion on a probability space (Ω,F , P ) such that F is
generated by B, equipped with its Brownian filtration (Ft)t≥0. The next result expresses the
integrand of the integral representation theorem of a square integrable random variable in
terms of the conditional expectation of its Malliavin derivative.

Theorem 5.1 (Clark–Ocone formula). Let F ∈ D1,2 ∩ L2(Ω,FT , P ). Then F admits the
following representation:

F = E(F ) +

∫ T

0
E(DtF |Ft)dBt.

Proof. By the Itô integral representation theorem, there exists a unique process adated process
u ∈ L2(Ω× [0, T ]) such that F ∈ L2(Ω,FT , P ) admits the stochastic integral representation

F = E(F ) +

∫ T

0
utdBt.

It suffices to show that ut = E(DtF |Ft) for almost all (t, ω) ∈ [0, T ]× Ω. Consider a process
v ∈ L2

T (P). On the one hand, the isometry property yields

E(δ(v)F ) =

∫ T

0
E(vsus)ds.

On the other hand, by the duality relationship (Proposition 2.1), and taking into account
that v is progressively measurable,

E(δ(v)F ) = E
(∫ T

0
vtDtFdt

)
=

∫ T

0
E(vsE(DtF |Ft))dt.

Therefore, ut = E(DtF |Ft) for almost all (t, ω) ∈ [0, T ]× Ω, which concludes the proof.

Consider the following simple examples of the application of this formula.

Example 5.2. Suppose that F = B3
t . Then DsF = 3B2

t 1[0,t](s) and

E(DsF |Fs) = 3E((Bt −Bs +Bs)
2|Fs) = 3(t− s+B2

s ).

Therefore

B3
t = 3

∫ t

0
(t− s+B2

s )dBs. (25)

This formula should be compared with Itô’s formula,

B3
t = 3

∫ t

0
B2
sdBs + 3

∫ t

0
Bsds. (26)

Notice that equation (25) contains only a stochastic integral but it is not a martingale, be-
cause the integrand depends on t, whereas (26) contains two terms and one is a martingale.
Moreover, the integrand in (25) is unique.
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Example 5.3. Consider the Brownian motion local time (Lxt )t≥0,x∈R. For any ε > 0, we set

pε(x) = (2πε)−1/2e−x
2/(2ε).

We have that, as ε→ 0,

Fε =

∫ t

0
pε(Bs − x)ds

L2(Ω)−→ Lxt . (27)

Applying the derivative operator yields

DrFε =

∫ t

0
p′ε(Bs − x)DrBsds =

∫ t

r
p′ε(Bs − x)ds.

Thus

E(DrFε|Fr) =

∫ t

r
E(p′ε(Bs −Br +Br − x)|Fr)ds

=

∫ t

r
p′ε+s−r(Br − x)ds.

As a consequence, taking the limit as ε → 0, we obtain the following integral representation
of the Brownian local time:

Lxt = E(Lxt ) +

∫ t

0
ϕ(t− r,Br − x)dBr,

where

ϕ(r, y) =

∫ r

0
p′s(y)ds.

5.2 Second integral representation

Recall that L is the generator of the Ornstein–Uhlenbeck semigroup.

Proposition 5.1. Let F be in D1,2 with E(F ) = 0. Then the process

u = −DL−1F

belongs to Dom δ and satisfies F = δ(u). Moreover u ∈ L2(Ω;H) is unique among all square
integrable processes with a chaos expansion

ut =
∞∑
q=0

Iq(fq(t))

such that fq(t, t1, . . . , tq) is symmetric in all q + 1 variables t, t1, . . . , tq.

Proof. By Proposition 4.4,
F = LL−1F = −δ(DL−1F ).

Clearly, the process u = −DL−1F has a Wiener chaos expansion with functions symmetric
in all their variables. To show uniqueness, let v ∈ L2(Ω;H) with a chaos expansion vt =∑∞

q=0 Iq(gq(t)), such that the function gq(t, t1, . . . , tq) is symmetric in all q + 1 variables
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t, t1, . . . , tq and such that δ(v) = F . Then, there exists a random variable G ∈ D1,2 such that
DG = v. Indeed, it suffices to take

G =
∞∑
q=0

1

q + 1
Iq+1(gq).

We claim that G = −L−1F . This follows from LG = −δDG = −δ(v) = −F . The proof is
now complete.

It is important to notice that, unlike the Clark–Ocone formula, which requires that the
underlying process is a Brownian motion, the representation provided in Proposition 5.1 holds
in the context of a general Gaussian isonormal process.

6 Existence and regularity of densities. Density formulas

In this Section we apply Malliavin calculus to derive explicit formulas for the densities of
random variables on Wiener space and to establish criteria for their regularity.

6.1 Analysis of densities in the one-dimensional case

We recall that B = (Bt)t≥0 is a Brownian motion on a probability space (Ω,F , P ) such that
F is generated by B. The topological support of the law of a random variable F is defined
as the set of points x ∈ R such that P (|x− F | < ε) > 0 for all ε > 0.

Our first result says that if a random variable F belongs to the Sobolev space D1,2 then
the topological support of the law of F is a closed interval.

Proposition 6.1. Let F ∈ D1,2. Then, the topological support of the law of F is a closed
interval.

Proof. Clearly the topological support of the law of F is a closed set. Then, it suffices to show
that it is connected. We show this by contradiction. If the topological support of the law of
F is not connected, there exists a point a ∈ R and ε > 0 such that P (a− ε < F < a+ ε) = 0,
P (F ≥ a + ε) < 1, and P (F ≤ a − ε) < 1. Let ϕ : R → R be an infinitely differentiable
function such that ϕ(x) = 0 if x ≤ a − ε and ϕ(x) = 1 if x ≥ a + ε. By Proposition 2.4,
ϕ(F ) ∈ D1,2 but, almost surely, ϕ(F ) = 1{F≥a+ε}. Therefore, by Proposition 3.5, we must
have P (F ≥ a+ ε) = 0 or P (F ≥ a+ ε) = 1, which leads to a contradiction.

If a random variable F belongs to D1,2, and its derivative is not degenerate, then F has a
density.

Proposition 6.2. Let F be a random variable in the space D1,2 such that ‖DF‖H > 0 almost
surely. Then, the law of F is absolutely continuous with respect to the Lebesgue measure on
R.

Proof. Replacing F by arctanF , we may assume that F takes values in (−1, 1). It suffices to
show that, for any measurable function g : (−1, 1)→ [0, 1] such that

∫ 1
−1 g(y)dy = 0, we have

E(g(F )) = 0. We can find a sequence of continuous functions gn : (−1, 1)→ [0, 1] such that,
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as n tends to infinity, gn(y) converges to g(y) for almost all y with respect to the measure
P ◦ F−1 + `, where ` denotes the Lebesgue measure on R. Set

ψn(x) =

∫ x

−∞
gn(y)dy.

Then, ψn(F ) converges to 0 almost surely and in L2(Ω) because gn converges almost every-
where to g, with respect to the Lebesgue measure, and

∫ 1
−1 g(y)dy = 0. Furthermore, by the

chain rule (Proposition 2.4), ψn(F ) ∈ D1,2 and

D(ψn(F )) = gn(F )DF,

which converges almost surely and in L2(Ω) to g(F )DF . Because D is closed, we conclude
that g(F )DF = 0. Our hypothesis ‖DF‖H > 0 implies that g(F ) = 0 almost surely, and this
finishes the proof.

The following result is an expression for the density of a random variable in the Sobolev
space D1,2, assuming that ‖DF‖H > 0 a.s.

Proposition 6.3. Let F be a random variable in the space D1,2 such that ‖DF‖H > 0 a.s.
Suppose that DF/‖DF‖2H belongs to the domain of the operator δ in L2(Ω). Then the law of
F has a continuous and bounded density, given by

p(x) = E
(

1{F>x}δ

(
DF

‖DF‖2H

))
. (28)

Proof. Let ψ be a nonnegative function in C∞0 (R), and set ϕ(y) =
∫ y
−∞ ψ(z)dz.

Then, by the chain rule (Proposition 2.4), ϕ(F ) belongs to D1,2 and we can write

〈D(ϕ(F )), DF 〉H = ψ(F )‖DF‖2H .

Using the duality formula (Proposition 2.1), we obtain

E(ψ(F )) = E
(〈

D(ϕ(F )) ,
DF

‖DF‖2H

〉
H

)
= E

(
ϕ(F ) δ

(
DF

‖DF‖2H

))
. (29)

By an approximation argument, equation (29) holds for ψ(y) = 1[a,b](y), where a < b. As a
consequence, we can apply Fubini’s theorem to get

P (a ≤ F ≤ b) = E
((∫ F

−∞
ψ(x)dx

)
δ

(
DF

‖DF‖2H

))
=

∫ b

a
E
(

1{F>x}δ

(
DF

‖DF‖2H

))
dx,

which implies the desired result.

Remark 6.1. Equation (28) still holds under the hypotheses F ∈ D1,p and DF/‖DF‖2H ∈
D1,p′(H) for some p, p′ > 1. Sufficient conditions for these hypotheses are F ∈ D2,α and
E(‖DF‖−2β) <∞ with 1/α+ 1/β < 1.
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Example 6.2. Let F = B(h). Then DF = h and

δ

(
DF

‖DF‖2H

)
= B(h)‖h‖−2

H .

As a consequence, formula (28) yields

p(x) = ‖h‖−2
H E

(
1{F>x}F

)
,

which is true because p(x) is the density of the distribution N(0, ‖h‖2H).

Applying equation (28) we can derive density estimates. Notice first that (28) holds if
1{F>x} is replaced by 1{F<x}, because the divergence has zero expectation. Fix p and q such
that 1/p+ 1/q = 1. Then, by Hölder’s inequality, we obtain

p(x) ≤ (P (|F | > |x|))1/q

∥∥∥∥δ( DF

‖DF‖2H

)∥∥∥∥
p

, (30)

for all x ∈ R. Applying (30) and Meyer’s inequality (24), we can deduce the following result.

Proposition 6.4. Let q, α, β be three positive real numbers such that 1/q + 1/α+ 1/β = 1.

Let F be a random variable in the space D2,α, such that E(‖DF‖−2β
H ) <∞. Then, the density

p(x) of F can be estimated as follows:

p(x) ≤ cq,α,β (P (|F | > |x|))1/q

×
(
E(‖DF‖−1

H ) +
∥∥D2F

∥∥
Lα(Ω;L2(R2

+))

∥∥∥‖DF‖−2
H

∥∥∥
β

)
. (31)

6.2 Existence and smoothness of densities for random vectors

Let F = (F 1, . . . , Fm) be such that F i ∈ D1,2 for i = 1, . . . ,m. We define the Malliavin
matrix of F as the random symmetric nonnegative definite matrix

γF = (〈DF i, DF j〉H)1≤i,j≤m. (32)

In the one-dimensional case, γF = ‖DF‖2H . The following theorem is a multidimensional
version of Proposition 6.2.

Theorem 6.3. If det γF > 0 a.s. then the law of F is absolutely continuous with respect to
the Lebesgue measure on Rm.

This theorem was proved by Bouleau and Hirsch using the co-area formula and techniques
of geometric measure theory, and we omit the proof. As a consequence, the measure (det γF ×
P ) ◦ F−1 is always absolutely continuous; that is,

P (F ∈ B ,det γF > 0) = 0,

for any Borel set B ∈ B(Rm) of zero Lebesgue measure.

Definition 6.4. We say that a random vector F = (F 1, . . . , Fm) is nondegenerate if F i ∈ D1,2

for i = 1, . . . ,m and
E((det γF )−p) <∞,

for all p ≥ 2.
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Set ∂i = ∂/∂xi and, for any multi-index α ∈ {1, . . . ,m}k, k ≥ 1, we denote by ∂α the
partial derivative ∂k/(∂xα1 · · · ∂xαk).

Lemma 6.5. Let γ be an m × m random matrix such that γij ∈ D1,∞ for all i, j and
E (| det γ|−p) <∞ for all p ≥ 2. Then,

(
γ−1

)ij
belongs to D1,∞ for all i, j, and

D
(
γ−1

)ij
= −

m∑
k,`=1

(
γ−1

)ik (
γ−1

)`j
Dγk`. (33)

Proof. It can be proved that P (det γ > 0) is zero or one. So, we can assume that det γ > 0
almost surely. For any ε > 0, we define γ−1

ε = (det γ + ε)−1A(γ), where A(γ) is the adjoint
matrix of γ. Then, the entries of γ−1

ε belong to D1,∞ and converge in Lp(Ω), for all p ≥ 2, to
those of γ−1 as ε tends to zero. Moreover, the entries of γ−1

ε satisfy

sup
ε∈(0,1]

‖(γ−1
ε )ij‖1,p <∞,

for all p ≥ 2. Therefore, by Proposition 4.3 the entries of γ−1
ε belong to D1,p for any p ≥ 2.

Finally, from the expression γ−1
ε γ = (det γ/(det γ + ε))Im, where Im denotes the identity

matrix of order m, we deduce (33) on applying the derivative operator and letting ε tend to
zero.

The following result can be regarded as an integration-by-parts formula and plays a fun-
damental role in the proof of the regularity of densities.

Proposition 6.5. Let F = (F 1, . . . , Fm) be a nondegenerate random vector. Fix k ≥ 1 and
suppose that F i ∈ Dk+1,∞ for i = 1, . . . ,m. Let G ∈ D∞ and let ϕ ∈ C∞p (Rm). Then, for any

multi-index α ∈ {1, . . . ,m}k, there exists an element Hα(F,G) ∈ D∞ such that

E(∂αϕ(F )G) = E(ϕ(F )Hα(F,G)), (34)

where the elements Hα(F,G) are recursively given by

H(i)(F,G) =
m∑
j=1

δ
(
G
(
γ−1
F

)ij
DF j

)
and, for α = (α1, . . . , αk), k ≥ 2, we set

Hα(F,G) = Hαk(F,H(α1,...,αk−1)(F,G)).

Proof. By the chain rule (Proposition 2.4), we have

〈D(ϕ(F )), DF j〉H =

m∑
i=1

∂iϕ(F )〈DF i, DF j〉H =

m∑
i=1

∂iϕ(F )γijF

and, consequently,

∂iϕ(F ) =
m∑
j=1

〈D(ϕ(F )), DF j〉H(γ−1
F )ji.
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Taking expectations and using the duality relationship (Proposition 2.1) yields

E(∂iϕ(F )G) = E(ϕ(F )H(i)(F,G)),

where H(i) =
∑m

j=1 δ
(
G
(
γ−1
F

)ij
DF j

)
. Notice that Meyer’s inequality (Theorem 4.4) and

Lemma 6.5 imply that H(i) belongs to Lp(Ω) for any p ≥ 2. We finish the proof with a
recurrence argument.

One can show that, for any p > 1, there exist constants β, γ > 1 and integers n, m such
that

‖Hα(F,G)‖p ≤ cp,q
∥∥det γ−1

F

∥∥m
β
‖DF‖nk,γ ‖G‖k,q . (35)

The proof of this inequality is based on Meyer’s and Hölder’s inequalities.
The following result is a multidimensional version of the density formula (28).

Proposition 6.6. Let F = (F 1, . . . , Fm) be a nondegenerate random vector such that F i ∈
Dm+1,∞ for i = 1, . . . ,m. Then F has a continuous and bounded density given by

p(x) = E(1{F>x}Hα(F, 1)), (36)

where α = (1, 2, . . . ,m).

Proof. Recall that, for α = (1, 2, . . . ,m)

Hα(F, 1)

=

m∑
j1,...,jm=1

δ
(
(γ−1
F )1j1DF j1δ

(
(γ−1
F )2j2DF j2 · · · δ

(
(γ−1
F )mjmDF jm

)
· · ·
))
.

Then, equality (34) applied to the multi-index α = (1, 2, . . . ,m) yields, for any ϕ ∈ C∞p (Rm),

E(∂αϕ(F )) = E(ϕ(F )Hα(F, 1)).

Notice that

ϕ(F ) =

∫ F 1

−∞
· · ·
∫ Fm

−∞
∂αϕ(x)dx.

Hence, by Fubini’s theorem we can write

E(∂αϕ(F )) =

∫
Rm

∂αϕ(x)E(1{F>x}Hα(F, 1))dx. (37)

Given any function ψ ∈ C∞0 (Rm), we can take ϕ ∈ C∞p (Rm) such that ψ = ∂αϕ, and (37)
yields

E(ψ(F )) =

∫
Rm

ψ(x)E(1{F>x}Hα(F, 1))dx,

which implies the result.

The following theorem is the basic criterion for the smoothness of densities.

Theorem 6.6. Let F = (F 1, . . . , Fm) be a nondegenerate random vector such that F i ∈ D∞
for all i = 1, . . . ,m. Then the law of F possesses an infinitely differentiable density.
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Proof. For any multi-index β and any ϕ ∈ C∞p (Rm), we have, taking α = (1, 2, . . . ,m),

E (∂β∂αϕ(F )) = E (ϕ(F )Hβ(F,Hα(F, 1))))

=

∫
Rm

∂αϕ(x)E
(
1{F>x}Hβ(F,Hα(F, 1))

)
dx.

Hence, for any ξ ∈ C∞0 (Rm),∫
Rm

∂βξ(x)p(x)dx =

∫
Rm

ξ(x)E
(
1{F>x}Hβ(F,Hα(F, 1))

)
dx.

Therefore, p(x) is infinitely differentiable and, for any multi-index β, we have

∂βp(x) = (−1)|β| E
(
1{F>x}Hβ(F, (Hα(F, 1))

)
.

This completes the proof.

6.3 Density formula using the Riesz transform

In this section we present a method for obtaining a density formula using the Riesz transform,
following the methodology introduced by Malliavin and extensively studied by Bally and
Caremellino. In contrast with (36), here we only need two derivatives, instead of m+ 1.

Let Qm be the fundamental solution to the Laplace equation ∆Qm = δ0 on Rm, m ≥ 2.
That is,

Q2(x) = a−1
2 ln

1

|x|
, Qm(x) = a−1

m |x|2−m, m > 2,

where am is the area of the unit sphere in Rm. We know that, for any 1 ≤ i ≤ m,

∂iQm(x) = −cm
xi
|x|m

, (38)

where cm = 2(m− 2)/am if m > 2 and c2 = 2/a2. Notice that any function ϕ in C1
0 (Rm) can

be written as

ϕ(x) = ∇ϕ ∗ ∇Qm(x) =
m∑
i=1

∫
Rm

∂ϕ(x− y)∂iQm(y)dy. (39)

Indeed,
∇ϕ ∗ ∇Qm(x) = ϕ ∗∆Qm(x) = ϕ(x).

Theorem 6.7. Let F be an m-dimensional nondegenerate random vector whose components
are in D2,∞. Then, the law of F admits a continuous and bounded density p given by

p(x) =
m∑
i=1

E(∂iQm(F − x)H(i)(F, 1)),

where

H(i)(F, 1) =

m∑
j=1

δ
(
(γ−1
F )ijDF j

)
.
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Proof. Let ϕ ∈ C1
0 (Rm). Applying (39), we can write

E(ϕ(F )) =

m∑
i=1

E
(∫

Rm
∂iQm(y)(∂iϕ(F − y))dy

)
.

Assume that the support of ϕ is included in the ball BR(0) for some R > 1. Then, using (38)
we obtain

E
(∫

Rm
|∂iQm(y)∂iϕ(F − y)| dy

)
≤ ‖∂iϕ‖∞E

(∫
{y:|F |−R≤|y|≤|F |+R}

|∂iQm(y)|dy
)

≤ cmVol(B1(0))‖∂iϕ‖∞E
(∫ |F |+R
|F |−R

r

rm
rm−1dr

)
= 2cmVol(B1(0))‖∂iϕ‖∞RE(|F |) <∞.

As a consequence, Fubini’s theorem and (34) yield

E(ϕ(F )) =
m∑
i=1

∫
Rm

∂iQm(y)E(∂iϕ(F − y))dy

=
m∑
i=1

∫
Rm

∂iQm(y)E(ϕ(F − y)H(i)(F, 1))dy

=
m∑
i=1

∫
Rm

ϕ(y)E(∂iQm(F − y)H(i)(F, 1))dy.

This completes the proof.

The approach based on the Riesz transform can also be used to obtain the following
uniform estimate for densities, due to Stroock.

Lemma 6.8. Under the assumptions of Theorem 6.7, for any p > m there exists a constant
c depending only on m and p such that

‖p‖∞ ≤ c
(

max
1≤i≤m

‖H(i)(F, 1)‖p
)m

.

Proof. From

p(x) =
m∑
i=1

E(∂iQm(F − x)H(i)(F, 1)),

applying Hölder’s inequality with 1/p+ 1/q = 1 and the estimate (see (38))

|∂iQm(F − x)| ≤ cm|F − x|1−m

yields

p(x) ≤ mcmA
(
E
(
|F − x|(1−m)q

))1/q
, (40)

where A = max1≤i≤m ‖H(i)(F, 1)‖p.
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Suppose first that p is bounded and let M = supx∈R p(x). We can write, for any ε > 0,

E(|F − x|(1−m)q) ≤ ε(1−m)q +

∫
|z−x|≤ε

|z − x|(1−m)qp(x)dx

≤ ε(1−m)q + Cm,pε
(p−m)/(p−1)M. (41)

Therefore, substituting (41) into (40), we get

M ≤ Amcm
(
ε1−m + C1/q

m,pε
(p−m)/pM1/q

)
.

Now we minimize with respect to ε and obtain M ≤ ACm,pM1−1/m, for some constant Cm,p,
which implies that M ≤ Cmm,pA

m. If p is not bounded, we apply the procedure to p ∗ ψδ,
where ψδ is an approximation of the identity, and let δ tend to zero at the end.

7 Malliavin Differentiability of Diffusion Processes. Proof of
Hörmander’s theorem

Suppose that B = (Bt)t≥0, with Bt = (B1
t , . . . , B

d
t ), is a d-dimensional Brownian motion.

Consider the m-dimensional stochastic differential equation

dXt =

d∑
j=1

σj(Xt)dB
j
t + b(Xt)dt, (42)

with initial condition X0 = x0 ∈ Rm, where the coefficients σj , b : Rm → Rm, 1 ≤ j ≤ d are
measurable functions.

By definition, a solution to equation (42) is an adapted process X = (Xt)t≥0 such that,
for any T > 0 and p ≥ 2,

E
(

sup
t∈[0,T ]

|Xt|p
)
<∞

and X satisfies the integral equation

Xt = x0 +
d∑
j=1

∫ t

0
σj(Xs)dB

j
s +

∫ t

0
b(Xs)ds. (43)

The following result is well known.

Theorem 7.1. Suppose that the coefficients σj , b : Rm → Rm, 1 ≤ j ≤ d, satisfy the Lipschitz
condition: for all x, y ∈ Rm,

max
j

(|σj(x)− σj(y)|, |b(x)− b(y)|) ≤ K|x− y|. (44)

Then there exists a unique solution X to Equation (43).

When the coefficients in equation (42) are continuously differentiable, the components of
the solution are differentiable in the Malliavin calculus sense.
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Proposition 7.1. Suppose that the coefficients σj, b are in C1(Rm;Rm) and have bounded
partial derivatives. Then, for all t ≥ 0 and i = 1, . . . ,m, Xi

t ∈ D1,∞, and for r ≤ t and
j = 1, . . . , d,

Dj
rXt =σj(Xr) +

m∑
k=1

d∑
`=1

∫ t

r
∂kσ`(Xs)D

j
rX

k
s dB

`
s

+
m∑
k=1

∫ t

r
∂kb(Xs)D

j
rX

k
s ds. (45)

Proof. To simplify, we assume that b = 0. Consider the Picard approximations given by

X
(0)
t = x0 and

X
(n+1)
t = x0 +

d∑
j=1

∫ t

0
σj(X

(n)
s )dBj

s ,

if n ≥ 0. We will prove the following claim by induction on n:

Claim: X
(n),i
t ∈ D1,∞ for all i = 1, . . . ,m, t ≥ 0. Moreover, for all p > 1 and t ≥ 0,

ψn(t) := sup
0≤r≤t

E
(

sup
s∈[r,t]

|DrX
(n)
s |p

)
<∞ (46)

and, for all T > 0 and t ∈ [0, T ],

ψn+1(t) ≤ c1 + c2

∫ t

0
ψn(s)ds, (47)

for some constants c1, c2 depending on T .

Clearly, the claim holds for n = 0. Suppose that it is true for n. Applying property (11)
of the divergence operator and the chain rule (Proposition 2.4), for any r ≤ t, i = 1, . . . ,m ,
and ` = 1, . . . , d, we get

D`
rX

(n+1),i
t = D`

r

( m∑
j=1

∫ t

0
σij(X

(n)
s )dBj

s

)

=

m∑
j=1

(
δ`,jσ

i
`(X

(n)
r ) +

∫ t

r
D`
r

(
σij(X

(n)
s )

)
dBj

s

)

=

m∑
j=1

(
δ`,jσ

i
`(X

(n)
r ) +

m∑
k=1

∫ t

r
∂kσj(X

(n)
s )D`

rX
(n),k
s dBj

s

)
.

From these equalities and condition (46) we see that X
(n+1),i
t ∈ D1,∞ and we obtain, using

the Burkholder–David–Gundy inequality and Hölder’s inequality,

E
(

sup
r≤s≤t

|DrX
(n+1)
s |p

)
≤ cp

(
γp + T (p−1)/2Kp

∫ t

r
E
(
|Dj

rX
(n)
s |p

)
ds

)
, (48)

where

γp = sup
n,j

E
(

sup
0≤t≤T

|σj(X(n)
t )|p

)
<∞.
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So (46) and (47) hold for n+ 1 and the claim is proved.
We know that

E
(

sup
s≤T
|X(n)

s −Xs|p
)
−→ 0

as n tends to infinity. By Gronwall’s lemma applied to (47) we deduce that the derivatives of

the sequence X
(n),i
t are bounded in Lp(Ω;H) uniformly in n for all p ≥ 2. This implies that

the random variables Xi
t belong to D1,∞. Finally, applying the operator D to equation (43)

we deduce the linear stochastic differential equation (45) for the derivative of Xi
t .

This completes the proof of the proposition.

Example 7.2. Consider the diffusion process in R

dXt = σ(Xt)dBt + b(Xt)dt, X0 = x0,

where σ and b are globally Lipschitz functions in C1(R). Then, for all t > 0, Xt belongs to
D1,∞ and the Malliavin derivative (DrXt)r≤t satisfies the following linear equation:

DrXt = σ(Xr) +

∫ t

r
σ′(Xs)Dr(Xs)dBs +

∫ t

r
b′(Xs)Dr(Xs)ds.

Therefore, by Itô’s formula,

DrXt = σ(Xt) exp

(∫ t

r
σ′(Xs)dBs +

∫ t

r
(b(Xs)− 1

2(σ′)2(Xs))ds

)
.

Consider the m×m matrix-valued process defined by

Yt = Im +

d∑
l=1

∫ t

0
∂σ`(Xs)YsdB

`
s +

∫ t

0
∂b(Xs)Ysds,

where Im denotes the identity matrix of order m and ∂σ` denotes the m×m Jacobian matrix
of the function σ`; that is,

(∂σ`)
i
j = ∂jσ

i
`.

In the same way, ∂b denotes the m ×m Jacobian matrix of b. If the coefficients of equation
(43) are of class C1+α, α > 0, then there is a version of the solution Xt(x0) to this equation
that is continuously differentiable in x0, and for which Yt is the Jacobian matrix ∂Xt/∂x0:

Yt =
∂Xt

∂x0
.

Proposition 7.2. For any t ∈ [0, T ] the matrix Yt is invertible. Its inverse Zt satisfies

Zt = Im −
d∑
`=1

∫ t

0
Zs∂σ`(Xs)dB

`
s

−
∫ t

0
Zs

(
∂b(Xs)−

d∑
`=1

∂σ`(Xs)∂σ`(Xs)

)
ds.
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Proof. By means of Itô’s formula, one can check that ZtYt = YtZt = Im, which implies that
Zt = Y −1

t . In fact,

ZtYt = Im +

d∑
`=1

∫ t

0
Zs ∂σ`(Xs)YsdB

`
s +

∫ t

0
Zs∂b(Xs)Ysds

−
d∑
`=1

∫ t

0
Zs∂σl(Xs)YsdB

`
s

−
∫ t

0
Zs

(
∂b(Xs)−

d∑
`=1

∂σ`(Xs)∂σ`(Xs)

)
Ysds

−
∫ t

0
Zs

( d∑
`=1

∂σ`(Xs)∂σ`(Xs)

)
Ysds = Im.

Similarly, we can show that YtZt = Im.

Lemma 7.3. The m× d matrix (DrXt)
i
j = Dj

rXi
t can be expressed as

DrXt = YtY
−1
r σ(Xr), (49)

where σ denotes the m× d matrix with columns σ1, . . . , σd.

Proof. It suffices to check that the process Φt,r := YtY
−1
r σ(Xr), t ≥ r satisfies

Φt,r = σ(Xr) +

d∑
`=1

∫ t

r
∂σ`(Xs)Φs,rdB

`
s +

∫ t

r
∂b(Xs)Φs,rds.

In fact,

σ(Xr) +
d∑
`=1

∫ t

r
∂σ`(Xs)(YsY

−1
r σ(Xr))dB

`
s

+

∫ t

r
∂b(Xs)(YsY

−1
r σ(Xr))ds

= σ(Xr) + (Yt − Yr)Y −1
r σ(Xr) = YtY

−1
r σ(Xr).

This completes the proof.

Consider the Malliavin matrix of Xt, denoted by γXt := Qt and given by

Qi,jt =

d∑
`=1

∫ t

0
D`
sX

i
tD

`
sX

j
t ds.

That is, Qt =
∫ t

0 (DsXt)(DsXt)
Tds. Equation (49) leads to

Qt = YtCtY
T
t , (50)

where

Ct =

∫ t

0
Y −1
s σσT (Xs)(Y

−1
s )Tds.

Taking into account that Yt is invertible, the nondegeneracy of the matrix Qt will depend
only on the nondegeneracy of the matrix Ct, which is called the reduced Malliavin matrix.
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7.1 Absolute continuity under ellipticity conditions

Consider the stopping time defined by

S = inf{t > 0 : detσσT (Xt) 6= 0}.

Theorem 7.4. Let (Xt)t≥0 be a diffusion process with C1+α and Lipschitz coefficients. Then,
for any t > 0, the law of Xt conditioned by {t > S} is absolutely continuous with respect to
the Lebesgue measure on Rm.

Proof. It suffices to show that detCt > 0 a.s. on the set {S < t}. Suppose that t > S. For
any u ∈ Rm with |u| = 1 we can write

uTCtu =

∫ t

0
uTY −1

s σσT (Xs)(Y
−1
s )Tuds

≥
∫ t

0
inf
|v|=1

(
vTσσT (Xs)v

)
|(Y −1

s )Tu|2ds.

Notice that inf |v|=1

(
vTσσT (Xs)v

)
is the smallest eigenvalue of σσT (Xs), which is strictly

positive in an open interval contained in [0, t] by the definition of the stopping time S and
because t > S.

Furthermore, |(Y −1
s )Tu| ≥ |u| |Ys|−1. Therefore we obtain

uTCtu ≥ k|u|2,

for some positive random variable k > 0, which implies that the matrix Ct is invertible. This
completes the proof.

Example 7.5. Assume that σ(x0) 6= 0 in Example 7.2. Then, for any t > 0, the law of Xt

is absolutely continuous with respect to the Lebesgue measure in R.

7.2 Regularity of the density under Hörmander’s conditions

We need the following regularity result, whose proof is similar to that of Proposition 7.1 and
is thus omitted.

Proposition 7.3. Suppose that the coefficients σj, 1 ≤ j ≤ m, and b of equation (42)
are infinitely differentiable with bounded derivatives of all orders. Then, for all t ≥ 0 and
i = 1, . . . ,m, Xi

t belong to D∞.

Consider the following vector fields on Rm:

σj =
m∑
i=1

σij(x)
∂

∂xi
, j = 1, . . . , d,

b =
m∑
i=1

bi(x)
∂

∂xi
.

The Lie bracket between the vector fields σj and σk is defined by

[σj , σk] = σjσk − σkσj = σ∇j σk − σ∇k σj ,
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where

σ∇j σk =
m∑

i,`=1

σ`j∂`σ
i
k

∂

∂xi
.

Set

σ0 = b− 1

2

d∑
`=1

σ∇` σ`.

The vector field σ0 appears when we write the stochastic differential equation (43) in terms
of the Stratonovich integral (see Section 2.7) instead of Itô’s integral:

Xt = x0 +
d∑
j=1

∫ t

0
σj(Xs) ◦ dBj

s +

∫ t

0
σ0(Xs)ds.

Let us introduce the nondegeneracy condition required for the smoothness of the density.
(HC) Hörmander’s condition: The vector space spanned by the vector fields

σ1, . . . , σd, [σi, σj ], 0 ≤ i ≤ d, 1 ≤ j ≤ d, [σi, [σj , σk]], 0 ≤ i, j, k ≤ d, . . .

at the point x0 is Rm.
For instance, if m = d = 1, σ1

1(x) = a(x) and σ1
0(x) = a0(x); then Hörmander’s condition

means that a(x0) 6= 0 or an(x0)a0(x0) 6= 0 for some n ≥ 1.

Theorem 7.6. Assume that Hörmander’s condition holds. Then, for any t > 0, the random
vector Xt has an infinitely differentiable density.

This result can be considered as a probabilistic version of Hörmander’s theorem on the
hypoellipticity of second-order differential operators. In fact, the density pt of Xt satisfies the
Fokker–Planck equation (

− ∂

∂t
+ L∗

)
pt = 0,

where

L =
1

2

m∑
i,j=1

(σσT )ij
∂2

∂xi∂xj
+

m∑
i=1

bi
∂

∂xi
.

Then, pt ∈ C∞(Rm) means that ∂/∂t− L∗ is hypoelliptic (Hörmander’s theorem).
For the proof of Theorem 7.6 we need several technical lemmas.

Lemma 7.7. Let C be an m ×m symmetric nonnegative definite random matrix. Assume
that the entries Cij have moments of all orders and that for any p ≥ 2 there exists ε0(p) such
that, for all ε ≤ ε0(p),

sup
|v|=1

P
(
vTCv ≤ ε

)
≤ εp.

Then E((detC)−p) <∞ for all p ≥ 2.

Proof. Let λ = inf |v|=1 v
TCv be the smallest eigenvalue of C. We know that λm ≤ detC.

Thus, it suffices to show that E(λ−p) < ∞ for all p ≥ 2. Set |C| =
(∑m

i,j=1(Cij)2
) 1

2
. Fix
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ε > 0, and let v1, . . . , vN be a finite set of unit vectors such that the balls with their center in
these points and radius ε2/2 cover the unit sphere Sm−1. Then, we have

P (λ < ε) = P

(
inf
|v|=1

vTCv < ε

)
≤ P

(
inf
|v|=1

vTCv < ε, |C| ≤ 1

ε

)
+ P

(
|C| > 1

ε

)
. (51)

Assume that |C| ≤ 1/ε and vTk Cvk ≥ 2ε for any k = 1, . . . , N . For any unit vector v, there
exists a vk such that |v − vk| ≤ ε2/2 and we can deduce the following inequalities:

vTCv ≥ vTk Cvk − |vTCv − vTk Cvk|
≥ 2ε− (|vTCv − vTCvk|+ |vTCvk − vTk Cvk|)
≥ 2ε− 2|C| |v − vk| ≥ ε.

As a consequence, (51) implies that

P (λ < ε) ≤ P
( N⋃
k=1

{vTk Cvk < 2ε}
)

+ P

(
|C| > 1

ε

)
≤ N(2ε)p+2m + εpE(|C|p)

if ε ≤ 1
2ε0(p + 2m). The number N depends on ε but is bounded by a constant times ε−2m.

Therefore, we obtain P (λ < ε) ≤ Cεp for all ε ≤ ε1(p) and for all p ≥ 2. This implies that
λ−1 has moments of all orders, which completes the proof of the lemma.

Lemma 7.8. Let (Zt)t≥0 be a real-valued, adapted, continuous process such that Z0 = z0 6= 0.
Suppose that there exist α > 0 and t0 > 0 such that, for all p ≥ 1 and t ∈ [0, t0],

E
(

sup
0≤s≤t

|Zs − z0|p
)
≤ Cptpα.

Then, for all p ≥ 1 and t ≥ 0,

E
((∫ t

0
|Zs|ds

)−p)
<∞.

Proof. We can assume that t ∈ [0, t0]. For any 0 < ε < t|z0|/2, we have

P

(∫ t

0
|Zs|ds < ε

)
≤ P

(∫ 2ε/|z0|

0
|Zs|ds < ε

)
≤ P

(
sup

0≤s≤2ε/|z0|
|Zs − z0| >

|z0|
2

)
≤ 2pCp
|z0|p

(
2ε

|z0|

)pα
,

which implies the desired result.

The next lemma was proved by Norris , following the ideas of Stroock, and is the basic
ingredient in the proof of Theorem 7.6.
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Lemma 7.9 (Norris’s lemma). Consider a continuous semimartingale of the form

Yt = y +

∫ t

0
asds+

d∑
i=1

∫ t

0
uisdB

i
s,

where

a(t) = α+

∫ t

0
βsds+

d∑
i=1

∫ t

0
γisdB

i
s

and c = E
(
sup0≤t≤T (|βt|+ |γt|+ |at|+ |ut|)p

)
<∞ for some p ≥ 2.

Fix q > 8. Then, for all r < (q−8)/27 there exists an ε0 such that, for all ε ≤ ε0, we have

P

(∫ T

0
Y 2
t dt < εq,

∫ T

0
(|at|2 + |ut|2)dt ≥ ε

)
≤ c1ε

rp.

Proof of Theorem 7.6. The proof will be carried out in several steps:

Step 1 We need to show that, for all t > 0 and all p ≥ 2, E((detQt)
−p) < ∞, where Qt is

the Malliavin matrix of Xt. Taking into account that

E
(
| detY −1

t |p + | detYt|p
)
<∞,

it suffices to show that E((detCt)
−p) <∞ for all p ≥ 2.

Step 2 Fix t > 0. Using Lemma 7.7, the problem reduces to showing that, for all p ≥ 2, we
have

sup
|v|=1

P
(
vTCtv ≤ ε

)
≤ εp,

for any ε ≤ ε0(p), where the quadratic form associated with the matrix Ct is given by

vTCtv =
d∑
j=1

∫ t

0
〈v, Y −1

s σj(Xs)〉2ds. (52)

Step 3 Fix a smooth function V and use Itô’s formula to compute the differential of
Y −1
t V (Xt):

d
(
Y −1
t V (Xt)

)
= Y −1

t

d∑
k=1

[σk, V ](Xt)dB
k
t

+Y −1
t

(
[σ0, V ] + 1

2

d∑
k=1

[σk, [σk, V ]]

)
(Xt)dt. (53)

Step 4 We introduce the following sets of vector fields:

Σ0 = {σ1, . . . , σd},
Σn = {[σk, V ], k = 0, . . . , d, V ∈ Σn−1} if n ≥ 1,

Σ = ∪∞n=0Σn
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and

Σ′0 = Σ0,

Σ′n =

{
[σk, V ], k = 1, . . . , d, V ∈ Σ′n−1;

[σ0, V ] + 1
2

d∑
j=1

[σj , [σj , V ]], V ∈ Σ′n−1

}
if n ≥ 1,

Σ′ = ∪∞n=0Σ′n.

We denote by Σn(x) (resp. Σ′n(x)) the subset of Rm obtained by freezing the variable x in
the vector fields of Σn (resp. Σ′n). Clearly, the vector spaces spanned by Σ(x0) or by Σ′(x0)
coincide and, under Hörmander’s condition, this vector space is Rm. Therefore, there exists
an integer j0 ≥ 0 such that the linear span of the set of vector fields

⋃j0
j=0 Σ′j(x) at point x0

has dimension m.
As a consequence there exist constants R > 0 and c > 0 such that

j0∑
j=0

∑
V ∈Σ′j

〈v, V (y)〉2 ≥ c, (54)

for all v and y with |v| = 1 and |y − x0| < R.

Step 5 For any j = 0, 1, . . . , j0 we put m(j) = 2−4j and define the set

Ej =

{ ∑
V ∈Σ′j

∫ t

0
〈v, Y −1

s V (Xs)〉2ds ≤ εm(j)

}
.

Notice that {vTCtv ≤ ε} = E0 because m(0) = 1. Consider the decomposition

E0 ⊂ (E0 ∩ Ec1) ∪ (E1 ∩ Ec2) ∪ · · · ∪ (Ej0−1 ∩ Ecj0) ∪ F,

where F = E0 ∩ E1 ∩ · · · ∩ Ej0 . Then, for any unit vector v, we have

P (vTCtv ≤ ε) = P (E0) ≤ P (F ) +

j0−1∑
j=0

P (Ej ∩ Ecj+1).

We will now estimate each term in this sum.

Step 6 Let us first estimate P (F ). By the definition of F we obtain

P (F ) ≤ P
( j0∑
j=0

∑
V ∈Σ′j

∫ t

0
〈v, Y −1

s V (Xs)〉2ds ≤ (j0 + 1)εm(j0)

)
.

Then, taking into account (54), we can apply Lemma 7.8 to the process

Zs = inf
|v|=1

j0∑
j=0

∑
V ∈Σ′j

〈v, Y −1
s V (Xs)〉2,
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and we obtain

E
(∣∣∣∣ inf
|v|=1

j0∑
j=0

∑
V ∈Σ′j

∫ t

0
〈v, Y −1

s V (Xs)〉2ds
∣∣∣∣−p) <∞.

Therefore, for any p ≥ 1, there exists ε0 such that

P (F ) ≤ εp

for any ε < ε0.

Step 7 For any j = 0, . . . , j0, the probability of the event Ej ∩Ecj+1 is bounded by the sum
with respect to V ∈ Σ′j of the probability that the two following events happen:∫ t

0
〈v, Y −1

s V (Xs)〉2ds ≤ εm(j)

and

d∑
k=1

∫ t

0
〈v, Y −1

s [σk, V ](Xs)〉2ds

+

∫ t

0

〈
v, Y −1

s

(
[σ0, V ] + 1

2

d∑
j=1

[σj , [σj , V ]]

)
(Xs)

〉2

ds >
εm(j+1)

n(j)
,

where n(j) denotes the cardinality of the set Σ′j .

Consider the continuous semimartingale (〈v, Y −1
s V (Xs)〉)s≥0. From (53) we see that the

quadratic variation of this semimartingale is equal to

d∑
k=1

∫ s

0
〈v, Y −1

r [σk, V ](Xr)〉2dr,

and the bounded variation component is∫ s

0

〈
v, Y −1

r

(
[σ0, V ] + 1

2

d∑
j=1

[σj , [σj , V ]]

)
(Xr)

〉
dr.

Taking into account that 8m(j+ 1) < m(j), from Norris’s lemma (Lemma 7.9) applied to the
semimartingale Ys = vTY −1

s V (Xs), we get that, for any p ≥ 1, there exists an ε0 > 0 such
that

P (Ej ∩ Ecj+1) ≤ εp,

for all ε ≤ ε0. The proof of the theorem is now complete.

8 Stein’s method for normal approximation

The following lemma is a characterization of the standard normal distribution on the real
line.
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Lemma 8.1 (Stein’s lemma). A random variable X such that E(|X|) <∞ has the standard
normal distribution N(0, 1) if and only if, for any function f ∈ C1

b (R), we have

E(f ′(X)− f(X)X) = 0. (55)

Proof. Suppose first that X has the standard normal distribution N(0, 1). Then, equality (55)
follows integrating by parts and using that the density p(x) = (1/

√
2π) exp(−x2/2) satisfies

the differential equation
p′(x) = −xp(x).

Conversely, let ϕ(λ) = E(eiλX), λ ∈ R, be the characteristic function of X. Because X is
integrable, we know that ϕ is differentiable and ϕ′(λ) = iE(XeiλX). By our assumption, this
is equal to −λϕ(λ). Therefore, ϕ(λ) = exp(−λ2/2), which concludes the proof.

If the expectation E(f ′(X)− f(X)X) is small for functions f in some large set, we might
conclude that the distribution of X is close to the normal distribution. This is the main idea
of Stein’s method for normal approximations and the goal is to quantify this assertion in a
proper way. To do this, consider a random variable X with the N(0, 1) distribution and fix
a measurable function h : R→ R such that E(|h(X)|) <∞. Stein’s equation associated with
h is the linear differential equation

f ′h(x)− xfh(x) = h(x)− E(h(X)), x ∈ R. (56)

Definition 8.2. A solution to equation (56) is an absolutely continuous function fh such that
there exists a version of the derivative f ′h satisfying (56) for every x ∈ R.

The next result provides the existence of a unique solution to Stein’s equation.

Proposition 8.1. The function

fh(x) = ex
2/2

∫ x

−∞
(h(y)− E(h(X)))e−y

2/2dy (57)

is the unique solution of Stein’s equation (56) satisfying

lim
x→±∞

e−x
2/2fh(x) = 0. (58)

Proof. Equation (56) can be written as

ex
2/2 d

dx

(
e−x

2/2fh(x)
)

= h(x)− E(h(X)).

This implies that any solution to equation (56) is of the form

fh(x) = cex
2/2 + ex

2/2

∫ x

−∞
(h(y)− E(h(X)))e−y

2/2dy,

for some c ∈ R. Taking into account that

lim
x→±∞

∫ x

−∞
(h(y)− E(h(X)))e−y

2/2dy = 0,

the asymptotic condition (58) is satisfied if and only if c = 0.
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Notice that, since
∫
R(h(y)− E(h(X)))e−y

2/2dy = 0, we have∫ x

−∞
(h(y)− E(h(X)))e−y

2/2dy = −
∫ ∞
x

(h(y)− E(h(X)))e−y
2/2dy. (59)

Proposition 8.2. Let h : R → [0, 1] be a measurable function. Then the solution to Stein’s
equation fh given by (57) satisfies

‖fh‖∞ ≤
√
π

2
and ‖f ′h‖∞ ≤ 2. (60)

Proof. Taking into account that |h(x)− E(h(X))| ≤ 1, where X has law N(0, 1), we obtain

|fh(x)| ≤ ex2/2
∫ ∞
|x|

e−y
2/2dy =

√
π

2
,

because the function x→ ex
2/2
∫∞
|x| e

−y2/2dy attains its maximum at x = 0.

To prove the second estimate, observe that, in view of (59), we can write

f ′h(x) = h(x)− E(h(X)) + xex
2/2

∫ x

−∞
(h(y)− E(h(X)))e−y

2/2dy

= h(x)− E(h(X))− xex2/2
∫ ∞
x

(h(y)− E(h(X)))e−y
2/2dy,

for every x ∈ R. Therefore

|f ′h(x)| ≤ 1 + |x|ex2/2
∫ ∞
|x|

e−y
2/2dy = 2.

This completes the proof.

8.1 Total variation and convergence in law

Let Fn be a sequence of random variables defined in a probability space (Ω,F , P ).

Definition 8.3. We say that Fn
L→ F if E[g(Fn)] → E[g(F )] for any g : R → R continuous

and bounded.

We know that Fn
L→ F if and only if P (Fn ≤ z) → P (F ≤ z) for any point z ∈ R of

continuity of the distribution function of F .
The total variation distance between two probabilities ν1 and ν2 on R is defined as

dTV (ν1, ν2) = sup
B∈B(R)

|ν1(B)− ν2(B)|

Then, dTV (P ◦ F−1
n , P ◦ F−1)→ 0 is strictly stronger that the convergence in law Fn

L→ F .
Using the Stein’s method, we can prove the following result.
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Proposition 8.3. Let ν be a probability on R. Then,

dTV (ν, γ) ≤ sup
φ∈FTV

∣∣∣∣∫
R

[φ′(x)− xφ(x)]ν(dx)

∣∣∣∣ ,
where

FTV = {φ ∈ C1(R) : ‖φ‖∞ ≤
√
π

2
, ‖φ′‖∞ ≤ 2}.

Proof. Let h : R → [0, 1] be a continuous function and let φh be the solution to the Stein’s
equation associated with h, that is,

h(x)− E[h(Z)] = φ′h(x)− xφh(x).

Integrating with respect to ν yields∣∣∣∣∫
R
hdν −

∫
R
hdγ

∣∣∣∣ =

∣∣∣∣∫
R

[φ′h(x)− xφh(x)]ν(dx)

∣∣∣∣
≤ sup

φ∈C1(R):‖φ‖∞≤
√

π
2
,‖φ′‖∞≤2

∣∣∣∣∫
R

[φ′(x)− xφ(x)]ν(dx)

∣∣∣∣ .
This inequality holds for any h : R → [0, 1] measurable, because we can approximate h by
continuous functions almost everywhere with respect to the measure ν + γ. Taking h = 1B,
we obtain the result.

9 Central limit theorems and Malliavin calculus

Let (Bt)∈[0,T ] be a Brownian motion defined on the Wiener space (Ω,F , P ). The following
results connects Stein’s method with Malliavin calculus.

Theorem 9.1 (Nourdin-Peccati). Suppose that F ∈ D1,2 satisfies F = δ(u), where u belongs
to the domain in L2 of the divergence operator δ. Then,

dTV (PF , γ) ≤ 2E[|1− 〈DF, u〉H |].

Proof. It follows from

E[Fφ(F )] = E[δ(u)φ(F )] = E[〈u,D[φ(F )]〉H ] = E[φ′(F )〈u,DF 〉H ].

Therefore,

|E[φ′(F )]− E(Fφ(F )]| = |E[φ′(F )[1− 〈DF, u〉H ]|
≤ 2E[|1− 〈DF, u〉H |]

for any φ ∈ FTV .

Suppose that F =
∫ T

0 usdBs, where u is an adapted measurable process in D1,2(H). Then,

DtF = ut +

∫ T

t
DtusdBs,
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and

〈u,DF 〉H = ‖u‖2H +

∫ T

0

(∫ T

t
DtusdBs

)
utdt.

As a consequence,

dTV (PF , γ) ≤ 2E
(
|1− ‖u‖2H |

)
+ 2E

(∣∣∣∣∫ T

0

(∫ T

t
DtusdBs

)
utdt

∣∣∣∣)

≤ 2E
(
|1− ‖u‖2H |

)
+ 2

[
E

∫ T

0

(∫ s

0
utDtusdt

)2

ds

] 1
2

.

Proposition 9.1. A sequence Fn =
∫ T

0 u
(n)
s dBs, where u(n) is progressively measurable and

u(n) ∈ D1,2(H), converges in total variation to the law N(0, 1) if:

(i) ‖u(n)‖2H → 1 in L1(Ω) and

(ii) E
∫ T

0

(∫ s
0 u

(n)
t Dtu

(n)
s dt

)2
ds→ 0.

Example 1. The previous proposition can be applied to the following example.

u
(n)
t =

√
2ntn exp(Bt(1− t))1[0,1](t).

We can take u = −DL−1F , because

F = LL−1F = −δDL−1F,

and, we obtain

dTV (PF , γ) ≤ 2E[|1− 〈DF,−DL−1F 〉H |]

If E[F 2] = σ2 > 0 and we take γσ = N(0, σ2), we can derive the following inequality:

dTV (F, γσ) ≤ 2

σ2
E[|σ2 − 〈DF, u〉H |].

Proof.

dTV (F, γσ) = sup
B∈B(R)

|P (F ∈ B)− γσ(B)|

= sup
B∈B(R)

|P (σ−1F ∈ σ−1B)− γ(σ−1B)|

= sup
B∈B(R)

|P (σ−1F ∈ B)− γ(B)|

≤ 2

σ2
E[|σ2 − 〈DF, u〉H |].
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9.1 Normal approximation on a fixed Wiener chaos

Recall that for any F ∈ D1,2 such that E[F ] = 0,

dTV (PF , γσ) ≤ 2

σ2
E[|σ2 − 〈DF,−DL−1F 〉H |].

Proposition 9.2. Suppose F ∈ Hq for some q ≥ 2 and E(F 2) = σ2. Then,

dTV (PF , γσ) ≤ 2

qσ2

√
Var

(
‖DF‖2H

)
Proof. Using L−1F = −1

qF and E[‖DF‖2H ] = qσ2, we obtain

E[|σ2 − 〈DF,−DL−1F 〉H |] = E

[∣∣∣∣σ2 − 1

q
‖DF‖2H

∣∣∣∣]
≤ 1

q

√
Var

(
‖DF‖2H

)
.

Proposition 9.3. Suppose that F = Iq(f) ∈ Hq, q ≥ 2. Then,

Var
(
‖DF‖2H

)
≤ (q − 1)q

3
(E(F 4)− 3σ4) ≤ (q − 1)Var

(
‖DF‖2H

)
.

Proof. This proposition is a consequence of the following two formulas:

Var
(
‖DF‖2H

)
=

q−1∑
r=1

r2(r!)2

(
q

r

)4

(2q − 2r)!‖f⊗̃rf‖2H⊗(2q−2r) (61)

Proof of (61): We have DtF = qIq−1(f(·, t)), and using the product formula for multiple
stochastic integrals we obtain

‖DF‖2H = q2

∫ T

0
Iq−1(f(·, t))2dt

= q2
q−1∑
r=0

r!

(
q − 1

r

)2

I2q−2r−2(f⊗̃r+1f)

= q2
q∑
r=1

(r − 1)!

(
q − 1

r − 1

)2

I2q−2r(f⊗̃rf)

= qq!‖f‖2H⊗q + q2
q−1∑
r=1

(r − 1)!

(
q − 1

r − 1

)2

I2q−2r(f⊗̃rf). (62)

Then, (61) follows from the isometry property of multiple integrals.
The second formula is the following one:

E[F 4]− 3σ4 =
3

q

q−1∑
r=1

r(r!)2

(
q

r

)4

(2q − 2r)!‖f⊗̃rf‖2H⊗(2q−2r) (63)
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Proof on (63): Using that −L−1F = 1
qF and L = −δD we can write

E[F 4] = E[F × F 3] = E[(−δDL−1F )F 3] = E[〈−DL−1F,D(F 3)〉H ]

=
1

q
E[〈DF,D(F 3)〉H ] =

3

q
E[F 2‖DF‖2H ]. (64)

By the product formula of multiple integrals,

F 2 = Iq(f)2 = q!‖f‖2H⊗q +

q−1∑
r=0

r!

(
q

r

)2

I2q−2r(f⊗̃rf). (65)

Then (63) follows from (64), (65), (62) and the isometry property of multiple integrals.

9.2 Fourth Moment theorem

Stein’s method combined with Malliavin calculus leads to a simple proof of the Fourth Moment
theorem:

Theorem 9.2. Fix q ≥ 2. Let Fn = Iq(fn) ∈ Hq, n ≥ 1 be such that

lim
n→∞

E(F 2
n) = σ2.

The following conditions are equivalent:

(i) Fn
L→ N(0, σ2), as n→∞.

(ii) E(F 4
n)→ 3σ4, as n→∞.

(iii) ‖DFn‖2H → qσ2 in L2(Ω), as n→∞.

(iv) For all 1 ≤ r ≤ q − 1, fn ⊗r fn → 0, as n→∞.

This theorem constitutes a drastic simplification of the method of moments.

Proof. First notice that (i) implies (ii) because for any p > 2, the hypercontractivity property
of the Ornstein-Uhlenbeck semigroup implies

sup
n
‖Fn‖p ≤ (p− 1)

q
2 sup

n
‖Fn‖2 <∞.

The equivalence of (ii) and (iii)) follows from the previous proposition, and these conditions
imply (i), with convergence in total variation. The fact that (iv) implies (ii) and (iii) is a
consequence of ‖fn⊗̃rfn‖ ≤ ‖fn ⊗r fn‖. Let us show that (ii) implies (iv). From (65) we get

E[F 4
n ] =

q∑
r=0

(r!)2

(
q

r

)4

(2q − 2r)!‖fn⊗̃rfn‖2H⊗(2q−2r)

= (2q)!‖fn⊗̃fn‖2H⊗2q +

q−1∑
r=1

(r!)2

(
q

r

)4

(2q − 2r)!‖fn⊗̃rfn‖2H⊗(2q−2r)

+(q!)2‖fn‖4H .

Then, we use the fact that (2q)!‖fn⊗̃fn‖2H⊗2q equals to 2(q!)2‖fn‖4H plus a linear combination
of the terms ‖fn ⊗r fn‖2H⊗(2q−2r) , with 1 ≤ r ≤ q − 1, to conclude that

‖fn ⊗r fn‖H⊗(2q−2r) → 0, 1 ≤ r ≤ q − 1.
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9.3 Multivariate Gaussian approximation

The next result is as multivariate extension of the fourth moment theorem.

Theorem 9.3 (Peccati-Tudor ’05). Let d ≥ 2 and 1 ≤ q1 < · · · < qd. Consider random
vectors

Fn = (F 1
n , . . . , F

d
n) = (Iq1(f1

n), . . . , Iqd(f
d
n)),

where f in ∈ L2
s([0, T ]qi). Suppose that, for any 1 ≤ i ≤ d,

lim
n→∞

E[(F in)2] = σ2
i .

Then, the following two conditions are equivalent:

(i) Fn
L→ Nd(0,Σ), where Σ is a diagonal matrix such that Σii = σ2

i .

(ii) For every i = 1, . . . , d, F in
L→ N(0, σ2

i ).

Note that the convergence of the marginal distributions implies the joint convergence to
a random vector with independent components.

9.4 Chaotic Central Limit Theorem

Theorem 9.4. Let Fn =
∑∞

q=1 Iq(fq,n), n ≥ 1. Suppose that:

(i) For all q ≥ 1, q!‖fq,n‖2 → σ2
q as n→∞.

(ii) For all q ≥ 2 and 1 ≤ r ≤ q − 1, fq,n ⊗r fq,n → 0 as n→∞.

(iii) q!‖fq,n‖2 ≤ δq, where
∑

q δq <∞.

Then, as n tends to infinity

Fn
L→ N(0, σ2), where σ2 =

∞∑
q=1

σ2
q .

Assuming (i), condition (ii) is equivalent to (ii)’: limn→∞E(Iq(fq,n)4) = 3σ4
q , q ≥ 2. The

theorem implies the convergence in law of the whole sequence (Iq(fq,n), q ≥ 1) to an infinite
dimensional Gaussian vector with independent components.

9.5 Breuer-Major theorem

A function f ∈ L2(R, γ) has Hermite rank d ≥ 1 if

f(x) =

∞∑
q=d

aqHq(x), ad 6= 0.

For example, f(x) = |x|p −
∫
R |x|

pdγ(x) has Hermite rank 1 if p > 0 is not an even integer.
Let X = {Xk, k ∈ Z} be a centered stationary Gaussian sequence with unit variance. Set

ρ(v) = E[X0Xv] for v ∈ Z.
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Theorem 9.5 (Breuer-Major ’83). Let f ∈ L2(R, γ) with Hermite rank d ≥ 1 and assume∑
v∈Z |ρ(v)|d <∞. Then,

Vn :=
1√
n

n∑
k=1

f(Xk)
L→ N(0, σ2),

as n→∞, where σ2 =
∑∞

q=d q!a
2
q

∑
v∈Z ρ(v)q.

Proof. From the chaotic Central Limit Theorem, it suffices to consider the case f = aqHq,
q ≥ d. There exists a sequence {ek, k ≥ 1} in H = L2([0, T ]) such that

〈ek, ej〉H = ρ(k − j).

The sequence {B(ek)} has the same law as {Xk}, and we may replace Vn by

Gn =
aq√
n

n∑
k=1

Hq(B(ek)) = Iq(fq,n),

where fq,n =
aq√
n

∑n
k=1 e

⊗q
k . We can write

q!‖fq,n‖2H⊗q =
q!a2

q

n

n∑
k,j=1

ρ(k − j)q = q!a2
q

∑
v∈Z

ρ(v)q
(

1− |v|
n

)
1{|v|<n},

and by the dominated convergence theorem

E[G2
n] = q!‖fq,n‖2H⊗q → q!a2

q

∑
v∈Z

ρ(v)q = σ2.

Applying the Fourth Moment Theorem, It suffices to show that for r = 1, . . . , q − 1,

fq,n ⊗r fq,n =
a2
q

n

n∑
k,j=1

ρ(k − j)re⊗(q−r)
k ⊗ e⊗(q−r)

j → 0.

We have

‖fq,n ⊗r fq,n‖2H⊗(2q−2r) =
a4
q

n2

n∑
i,j,k,`=1

ρ(k − j)rρ(i− `)rρ(k − i)q−rρ(j − `)q−r.

Using |ρ(k − j)rρ(k − i)q−r| ≤ |ρ(k − j)|q + |ρ(k − i)|q, we obtain

‖fq,n ⊗r fq,n‖2H⊗(2q−2r) ≤ 2a4
q

∑
k∈Z
|ρ(k)|q

n−1+ r
q

∑
|i|≤n

|ρ(i)|r


×

n−1+ q−r
q

∑
|j|≤n

|ρ(j)|q−r
 .

Then, it suffices to show that for r = 1, . . . , q − 1,

n
−1+ r

q

∑
|i|≤n

|ρ(i)|r → 0.
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This follows from Hölder’s inequality. Indeed, for a fixed δ ∈ (0, 1), we have the estimates

n
−1+ r

q

∑
|i|≤[nδ]

|ρ(i)|r ≤ n−1+ r
q (2[nδ] + 1)

1− r
q

(∑
i∈Z
|ρ(i)|q

) r
q

≤ cδ1− r
q ,

and

n
−1+ r

q

∑
[nδ]<|i|≤n

|ρ(i)|r ≤

 ∑
[nδ]<|i|≤n

|ρ(i)|q
 r

q

.

The first term converges to zero as δ tends to zero and the second one converges to zero for
fixed δ as n→∞.

9.6 Fractional Brownian motion

The fractional Brownian motion (fBm) BH = (BH
t )t≥0 is a zero mean Gaussian process with

covariance

E(BH
s B

H
t ) = RH(s, t) =

1

2

(
s2H + t2H − |t− s|2H

)
.

H ∈ (0, 1) is called the Hurst parameter.
The covariance formula implies E(BH

t − BH
s )2 = |t − s|2H . As a consequence, for any

γ < H, with probability one, the trajectories t→ BH
t (ω) are Hölder continuous of order γ:

|BH
t (ω)−BH

s (ω)| ≤ Gγ,T (ω)|t− s|γ , s, t ∈ [0, T ].

For H = 1
2 , B

1
2 is a Brownian motion.

Properties of the fractional Brownian motion:
1) The fractional Brownian motion has the following self-similarity property. For all a > 0,
the processes

{a−HBH
at , t ≥ 0}

and
{BH

t , t ≥ 0}

have the same probability distribution (they are fractional Brownian motions with Hurst
parameter H).
2) Unlike Brownian motion, the fractional Brownian motion has correlated increments.
More precisely, For H 6= 1

2 , we can write

ρ(n) = E(BH
1 (BH

n+1 −BH
n ))

=
1

2

(
(n+ 1)2H + (n− 1)2H − 2n2H

)
∼ H(2H − 1)n2H−2,

as n→∞.

(ii) If H > 1
2 , then ρ(n) > 0 and

∑
n ρ(n) =∞ (long memory).

(iii) If H < 1
2 , then ρ(n) < 0 (intermittency) and

∑
n |ρ(n)| <∞.
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3) The fractional Brownian motion has finite 1
H -variation: Fix T > 0. Set ti = iT

n for
1 ≤ i ≤ n and define ∆BH

ti = BH
ti −B

H
ti−1

. Then, as n→∞,

n∑
i=1

|∆BH
ti |

1
H

L2(Ω),a.s.−→ cHT,

where cH = E[|BH
1 |

1
H ].

Proof. By the self-similarity,
∑n

i=1 |∆BH
ti |

1
H has the same law as

T

n

n∑
i=1

|BH
i −BH

i−1|
1
H .

The sequence {BH
i −BH

i−1, i ≥ 1} is stationary and ergodic. Therefore, the Ergodic Theorem
implies the desired convergence.

9.6.1 Fractional noise

Let Xk = BH
k − BH

k−1. The sequence {Xk, k ≥ 1} is Gaussian, stationary and centered with
covariance

ρ(n) =
1

2

(
|n+ 1|2H + |n− 1|2H − 2|n|2H

)
.

We have ρ(n) ∼ H(2H−1)n2H−2 as n→∞. Then, for any integer q ≥ 2 such that H < 1− 1
2q ,

we have ∑
v∈Z
|ρ(v)|q <∞

and the Breuer-Major theorem implies

1√
n

n∑
k=1

Hq(B
H
k −BH

k−1)
L→ N(0, σ2

H,q),

where σ2
H,q = q!

∑
v∈Z ρ(v)q.

9.6.2 CLT for the q-variation of the fBm

For a real q ≥ 1, set cq = E[|Z|q], where Z ∼ N(0, 1). The Breuer-Major theorem leads to
the following convergence:

Theorem 9.6. Suppose H < 1
2 and q is not an even integer. As n→∞ we have

1√
n

n∑
k=1

[
nqH |BH

k
n

−BH
k−1
n

|q − cq
]
L→ N(0, σ̃2

H,q).

Proof. Use that |x|q − cq has Hermite rank 1.
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9.6.3 Rate of convergence for the quadratic variation

Define for n ≥ 1,

Sn =
n∑
k=1

(∆k,nB
H)2,

where ∆k,nB
H = BH

k
n

−BH
k−1
n

. Then,

n2H−1Sn
a.s.→ 1,

n tends to infinity. In fact, by the self-similarity property, n2H−1Sn has the same law as
1
n

∑n
k=1(BH

k −BH
k−1)2, and the result follows form the Ergodic Theorem. To study the asymp-

totic normality, consider

Fn =
1

σn

n∑
k=1

[
n2H(∆k,nB

H)2 − 1
] L

=
1

σn

n∑
k=1

[
(BH

k −BH
k−1)2 − 1

]
,

where σn is such that E[F 2
n ] = 1.

Theorem 9.7. Assume H < 3
4 . Then, limn→∞

σ2

n = 2
∑

r∈Z ρ
2(r) and

dTV (PFn , γ) ≤ cH ×


n−

1
2 if H ∈ (0, 5

8)

n−
1
2 (log n)

3
2 if H = 5

8

n4H−3 if H ∈ (5
8 ,

3
4).

As a consequence,

√
n(n2H−1Sn − 1)

L→ N

(
0, 2

∑
r∈Z

ρ2(r)

)
.

The estimator of H given by Ĥn = 1
2 −

logSn
2 logn satisfies Ĥn

a.s.→ H and

√
n log n(Ĥn −H)

L→ N

(
0,

1

2

∑
r∈Z

ρ2(r)

)
.

Proof. There exists a sequence {ek, k ≥ 1} in H = L2([0, T ]) such that

〈ek, ej〉H = ρ(k − j).

The sequence {B(ek)} has the same law as {BH
k −BH

k−1}, and we may replace Fn by

Gn =
1

σn

n∑
k=1

[
B(ek)

2 − 1
]

= I2(fn),

where fn = 1
σn

∑n
k=1 ek ⊗ ek. By the isometry property of multiple integrals,

1 = E[G2
n] = 2‖fn‖2L2([0,T ]2) =

2

σ2
n

n∑
k,j=1

ρ2(k − j) =
2n

σ2
n

∑
|r|<n

(
1− |r|

n

)
ρ2(r).
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Since
∑

r ρ
2(r) < ∞, because H < 3

4 , we deduce that limn→∞
σ2

n = 2
∑

r∈Z ρ
2(r). We can

write Dr[I2(fn)] = 2I1(fn(·, r)] and

‖D[I2(fn)]‖2H = 4
(
I2(fn ⊗1 fn) + ‖fn‖2H

)
= 4I2(fn ⊗1 fn) + 2.

Therefore,

Var
(
‖D[I2(fn)]‖2H

)
= 16E

[
(I2(fn ⊗1 fn))2

]
= 8‖fn ⊗1 fn‖2L2([0,T ]2)

=
16

σ4
n

n∑
k,j,i,`=1

ρ(k − j)ρ(i− `)ρ(k − i)ρ(j − `)

≤ 16

σ4
n

n∑
i,`=1

(ρn ∗ ρn)(i− `)2

≤ 16n

σ4
n

∑
k∈Z

(ρn ∗ ρn)(k)2 =
16n

σ4
n

‖ρn ∗ ρn‖2`2(Z),

where ρn(k) = |ρ(k)|1{|k|≤n−1}. Applying Young’s inequality yields

‖ρn ∗ ρn‖2`2(Z) ≤ ‖ρn‖
4
`4/3(Z)

,

so that

Var
(
‖D[I2(fn)]‖2H

)
≤ 16n

σ4
n

∑
|k|<n

|ρ(k)|
4
3

3

.

Thus,

dTV (Fn, Z) ≤ 4
√
n

σ2
n

∑
|k|<n

|ρ(k)|
4
3

 3
2

and the result follows from ρ(k) ∼ H(2H − 1)|k|2H−2 as |k| → ∞.

Remark:
Nourdin-Peccati ’13 proved the following optimal version of the fourth moment theorem

(assuming E[F 2
n ] = 1):

cM(Fn) ≤ dTV (Fn, Z) ≤ CM(Fn),

where M(Fn) = max(|E[F 3
n ]|, E[F 4

n ]− 3). As a consequence, the sequence

Fn =
1

σn

n∑
k=1

[
(BH

k −BH
k−1)2 − 1

]
satisfies:

dTV (PFn , γ) ≈


n−

1
2 if H ∈ (0, 2

3)

n−
1
2 (log n)2 if H = 2

3

n6H− 9
2 if H ∈ (2

3 ,
3
4),

where ≈ means that we have an upper and lower bounds with some constants cH,1 and cH,2.
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10 Applications of the Malliavin calculus in finance

In this section we present some applications of Malliavin Calculus to mathematical finance.
First we discuss a probabilistic method for numerical computations of price sensitivities
(Greeks) based on the integration by parts formula. Then, we discuss the use of Clark-Ocone
formula to find hedging portfolios in the Black-Scholes model.

10.1 Black-Scholes model

Consider a market consisting of one stock (risky asset) and one bond (risk-less asset). We
assume that the price process (St)t≥0 follows a Black-Scholes model with constant coefficients
σ > 0 and µ, that is,

St = S0 exp

((
µ− σ2

2

)
t+ σBt

)
, (66)

where B = (Bt)t∈[0,T ] is a Brownian motion defined in a complete probability space (Ω,F , P ).
We will denote by (Ft)∈[0,T ] the filtration generated by the Brownian motion and completed
by the P -null sets. By Itô’s formula we obtain that St satisfies a linear stochastic differential
equation

dSt = µStdt+ σStdBt. (67)

The coefficient µ is the mean return rate and σ is the volatility. The price of the bond at
time t is ert, where r is the interest rate.

Consider an investor who starts with some initial endowment x ≥ 0 and invests in the
assets described above. Let αt be the number of non-risky assets and βt the number of stocks
owned by the investor at time t. The couple φt = (αt, βt), t ∈ [0, T ], is called a portfolio, and
we assume that the processes αt and βt are measurable and adapted processes such that∫ T

0
β2
t dt <∞,

∫ T

0
|αt| dt <∞

almost surely. Then the value of the portfolio at time t is Vt(φ) = αte
rt + βtSt.We say that

the portfolio φ is self-financing if

Vt(φ) = x+ r

∫ t

0
αse

rsds+

∫ t

0
βsdSs.

From now on we will consider only self-financing portfolios. It is easy to check that the
discounted value of a self-financing portfolio Ṽt(φ) = e−rtVt(φ) satisfies

Ṽt(φ) = x+

∫ t

0
βsdS̃s,

where S̃t = e−rtSt. Notice that

dS̃t = (µ− r) S̃tdt+ σS̃tdBt.

Set θ = µ−r
σ . Consider the martingale measure defined on FT , by

dQ

dP
= exp

(
−θBt −

θ2

2

)
.
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Under Q the process Wt = Bt + θt is a Brownian motion and the discounted price process
S̃t = e−rtSt is a martingale because

dS̃t = σS̃tdWt.

Suppose that F ≥ 0 is an FT -measurable such that EQ(F 2) < ∞. The random variable
F represents the payoff of some derivative. We say that F can ve replicated if there exists
a self-financing portfolio φ such that VT (φ) = F . The Itô integral representation theorem
implies that any derivative is replicable, and this means that the Black-Scholes market is
complete. Indeed, if suffices to write

e−rTF = EQ(e−rTF ) +

∫ T

0
usdWs,

and take the self-financing portfolio φt = (αt, βt), where

βt =
ut

σS̃t
. (68)

The price of a derivative with payoff F at time t ≤ T is given by the value at time t of a
self-financing portfolio which replicates F .Then,

Vt(φ) = e−r(T−t)EQ(F |Ft). (69)

10.2 Computation of Greeks

In this section we will present a general integration by parts formula and we will apply it to
the computation of Greeks in the Black-Schole smodel.

Let W = {W (h), h ∈ H} denote an isonormal Gaussian process associated with the
Hilbert space H. We assume that W is defined on a complete probability space (Ω,F , P ),
and that F is generated by W .

Proposition 10.1. Let F , G be two random variables such that F ∈ D1,2. Consider an
H-valued random variable u such that DuF = 〈DF, u〉H 6= 0 a.s. and Gu(DuF )−1 ∈ Domδ.
Then, for any continuously differentiable function function f with bounded derivative we have

E(f ′(F )G) = E(f(F )H(F,G)), (70)

where H(F,G) = δ(Gu(DuF )−1).

Proof: By the chain rule we have

Du(f(F )) = f ′(F )DuF.

Hence, by the duality relationship we get

E(f ′(F )G) = E
(
Du(f(F ))(DuF )−1G

)
= E

(〈
D(f(F )), u(DuF )−1G

〉
H

)
= E(f(F )δ(Gu(DuF )−1)).

This completes the proof. �
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Remark 10.1. If the law of F is absolutely continuous, we can assume that the function f
is Lipschitz.

Remark 10.2. Suppose that u is deterministic. Then, for Gu(DuF )−1 ∈ Domδ it suffices
that G(DuF )−1 ∈ D1,2. Sufficient conditions for this are the following: G ∈ D1,4, F ∈ D2,2,
E(G6) <∞, E((DuF )−12) <∞, and E(‖DDuF‖6H) <∞.

Remark 10.3. Suppose we take u = DF . In this case

H(F,G) = δ

(
GDF

‖DF‖2H

)
,

and Equation (66) yields

E(f ′(F )G) = E

(
f(F )δ

(
GDF

‖DF‖2H

))
. (71)

10.2.1 Computation of Greeks for European options

A Greek is a derivative of a financial quantity, usually an option price, with respect to any
of the parameters of the model. This derivative is useful to measure the stability of this
quantity under variations of the parameter. Consider an option with payoff F ≥ 0 such that
EQ(F 2) <∞. From (69) its price at time t = 0 is given by

V0 = EQ(e−rTF ).

The most important Greek is the Delta, denoted by ∆, which by definition is the derivative
of V0 with respect to the initial price of the stock S0.

Suppose that the payoff F only depents on the price of the stock at the maturity time T .
That is, F = Φ(ST ). We call these derivative European options.

Notice that ∂ST
∂S0

= ST
S0

. As a consequence, if Φ is a Lipschitz function we can write

∆ =
∂V0

∂S0
= EQ(e−rTΦ′(ST )

∂ST
∂S0

) =
e−rT

S0
EQ(Φ′(ST )ST ).

Now we will apply Proposition 10.1 with u = 1, F = ST and G = ST . We have

DuST =

∫ T

0
DtSTdt = σT ST . (72)

Hence, all the conditions appearing in Remark 2 above are satisfies in this case and we we
have

δ
(
ST (DuST )−1

)
= δ

(
1

σT

)
=
WT

σT
.

As a consequence,

∆ =
e−rT

S0σT
EQ(Φ(ST )WT ). (73)
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The Gamma, denoted by Γ, is the second derivative of the option price with respect to
S0. As before we obtain

Γ =
∂2V0

∂S2
0

= EQ

(
e−rTΦ′′(ST )

(
∂ST
∂S0

)2
)

=
e−rT

S2
0

EQ(Φ′′(ST )S2
T ).

Suppose now that Φ′ is Lipschitz. We first apply Proposition 10.1 with S2
T , F = ST and

u = 1. From (72) we have

δ
(
S2
T (DuST )−1

)
= δ

(
ST
σT

)
= ST

(
WT

σT
− 1

)
,

and, as a consequence,

EQ(Φ′′(ST )S2
T ) = EQ

(
Φ′(ST )ST

(
WT

σT
− 1

))
.

Finally, applying again Proposition 10.1 with G = ST

(
WT
σT − 1

)
, F = ST and u = 1 yields

δ

(
ST

(
WT

σT
− 1

)(∫ T

0
DtSTdt

)−1
)

= δ

(
WT

σ2T 2
− 1

σT

)
=

(
W 2
T

σ2T 2
− 1

σ2T
− WT

σT

)
and,

EQ

(
Φ′(ST )ST

(
WT

σT
− 1

))
= EQ

(
Φ(ST )

(
W 2
T

σ2T 2
− 1

σ2T
− WT

σT

))
.

Therefore, we obtain

Γ =
e−rT

S2
0σT

EQ

(
Φ(ST )

(
W 2
T

σT
− 1

σ
−WT

))
. (74)

The derivative with respect to the volatility is called Vega, and denoted by ϑ:

ϑ =
∂V0

∂σ
= EQ(e−rTΦ′(ST )

∂ST
∂σ

) = e−rTEQ(Φ′(ST )ST (WT − σT )).

Applying Proposition 10.1 with G = STWT , F = ST and u = 1 yields

δ

(
ST (WT − σT )

(∫ T

0
DtSTdt

)−1
)

= δ

(
WT

σT
− 1

)
=

(
W 2
T

σT
− 1

σ
−WT

)
.

As a consequence,

ϑ = e−rTEQ

(
Φ(ST )

(
W 2
T

σT
− 1

σ
−WT

))
. (75)

By means of an approximation procedure these formulas still hold although the function
Φ and its derivative are not Lipschitz. We just need Φ to be piecewise continuous with jump
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discontinuities and with linear growth. In particular, we can apply these formulas to the case
of and European call-option (Φ(x) = (x−K)+), and European put-option (Φ(x) = (K−x)+),
or a digital option (Φ(x) = 1{x>K}). For example, using formulas (73), (74), and (75) we
can compute the values of ∆, Γ and ϑ for an European Call option with exercise price K and
compare the results with those obtained in this case using the explicit expression for the price

V0 = S0N(d+)−Ke−rTN(d−),

where N is the distribution function of the law N(0, 1), and

d± =
log S0

K +
(
r ± σ2

2

)
T

σ
√
T

.

We can compute the values of the previous derivatives with a Monte Carlo numerical
procedure.

10.2.2 Computation of Greeks for exotic options

Consider options whose payoff is a function of the average of the stock price 1
T

∫ T
0 Stdt, that

is

F = Φ

(
1

T

∫ T

0
Stdt

)
.

For instance, an Asiatic Call-option with exercise price K, is a derivative of this type, where

F =
(

1
T

∫ T
0 Stdt−K

)+
. In this case there is no closed formula for the density of the random

variable 1
T

∫ T
0 Stdt. From (69) the price of this option at time t = 0 is given by

V0 = e−rTEQ

(
Φ

(
1

T

∫ T

0
Stdt

))
.

Let us compute the Delta for this type of options. Set ST = 1
T

∫ T
0 Stdt. We have

∆ =
∂V0

∂S0
= EQ(e−rTΦ′(ST )

∂ST
∂S0

) =
e−rT

S0
EQ(Φ′(ST )ST ).

We are going to apply Proposition 10.1 with G = ST , F = ST and ut = St. Let us compute

DtF =
1

T

∫ T

0
DtSrdr =

σ

T

∫ T

t
Srdr,

and

δ

(
GS·∫ T

0 StDtFdt

)
=

2

σ
δ

(
S·∫ T

0 Stdt

)

=
2

σ

∫ T0 StdWt∫ T
0 Stdt

+

∫ T
0 St

(∫ T
t σSrdr

)
dt(∫ T

0 Stdt
)2


=

2

σ

∫ T
0 StdWt∫ T

0 Stdt
+ 1.
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Notice that ∫ T

0
StdWt =

1

σ

(
ST − S0 − r

∫ T

0
Stdt

)
.

Thus,

δ

(
GS·∫ T

0 StDtFdt

)
=

2 (ST − S0)

σ2
∫ T

0 Stdt
+ 1− 2r

σ2
=

2

σ2

(
ST − S0∫ T
0 Stdt

−m

)
,

where m = r − σ2

2 . Finally, we obtain the following expression for the Delta

∆ =
2e−rT

S0σ2
EQ

(
Φ
(
ST
)( ST − S0

TST
−m

))
.

10.3 Application of the Clark-Ocone formula in hedging

In this section we discuss the application of Clark-Ocone formula to find explicit formulas for
a replicating portfolio in the Black-Scholes model.

Suppose that F ∈ D1,2. Then, applying Clark-Ocone’s formula, from (68) we obtain

βt =
e−r(T−t)

σSt
EQ (DtF |Ft) .

Consider the particular case of an European option with payoff F = Φ(ST ). Then

βt =
e−r(T−t)

σSt
EQ
(
Φ′(ST )σST |Ft

)
= e−r(T−t)EQ

(
Φ′(

ST
St
St)

ST
St
|Ft
)

= e−r(T−t)EQ
(
Φ′(xST−t)ST−t

)
|x=St .

In this way we recover the fact that βt coincides with ∂F
∂x (t, St), where F (t, x) is the price

function.
Consider now an option whose payoff is a function of the average of the stock price

ST = 1
T

∫ T
0 Stdt, that is F = Φ

(
ST
)
. In this case we obtain

βt =
eT−t

St
EQ

(
Φ′(ST )

1

T

∫ T

t
Srdr|Ft

)
.

We can write

ST =
t

T
St +

1

T

∫ T

t
Srdr,

where St = 1
t

∫ t
0 Srdr. As a consequence we obtain

βt =
e−r(T−t)

St
EQ

(
Φ′
(
tx

T
+
y(T − t)

T
ST−t

)(
y(T − t)

T
ST−t

))
|x=St,y=St

.
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