Malliavin Calculus

by David Nualart



1 One-dimensional Gaussian analysis

Consider the probability space (R, B(R),~), where

e v = N(0,1) is the standard Gaussian probability on R with density

1 _$2/2

T) = e , z € R.
P = 7w
e The probability of any interval [a, b] is given by
1 2
a,b)) = —— [ e /2%d
Weth == [

We are going to introduce two basic differential operators. For any f € C'(R) we define:
e Derivative operator: D f(x) = f'(x).
e Divergence operator:  df(x) =z f(x) — f'(z).

Denote by C};(Rm) the space of functions f : R™ — R, which are k times continuously
differentiable, and such that for some N > 1, |f®)(z)| < C(1 + |z|V).

Lemma 1.1. The operators D and § are adjoint with respect to the measure v. That means,
for any f,g € C’; (R), we have

(Df, 9>L2(R,7) =(f, 59>L2(R,~,) -

Proof. Integrating by parts and using p'(z) = —xp(z) we get
[ F@g@p)ds = [ fe)gp@) s
R R
— [t @pia)ds + [ F@gla)zpa)ds
R R

- [ re)sa@mae
O
Lemma 1.2 (Heisenberg’s commutation relation). Let f € C?(R). Then
(D5 —6D)f = f|

Proof. We can write

Dif(x) = D(zf(x) - f'(z)) = f(z) +2f'(z) — f'(2)
and, on the other hand,

0Df(x) = of'(x) = zf'(x) — f"(2).

This completes the proof. ]



More generally, if f € C™(R) for n > 2, we have

(D™ — §"D)f =nd" 1 f

Proof. Using induction on n, we can write

D&"f = D" f)=6D(6" T f)+ 6" f
= §[6"'Df+(n—1)8"2f] + 0" f=8"Df +né"'f.

O

Next we will introduce the Hermite polynomials. Define Hy(z) = 1, and for n > 1 put
H,(x) = ¢"1. In particular, for n = 1,2, 3, we have

Hl(l‘) = fl==x
Hy(z) = dx=2>-1
H3(z) = 6(2*—1)=2a% -3z

We have the following formula for the derivatives of the Hermite polynomials:
H;] = an,1

In fact,
H' =D§"1 =6"D1+né" "1 =nH,_;.

Proposition 1.1. The sequence of normalized Hermite polynomials {ﬁHn,n > 0} form a

complete orthonormal system of functions in the Hilbert space L?(R,7).

Proof. For n,m > 0, we can write

I ifn=
/ Ho plxyde =4 LT
0 ifn#m
Indeed, using the properties of Hermite polynomials, we obtain

/ Hi () Hon (2)p(a) s = / H(2)6™1(2)p(a)de
R R

= /RHé(m)cSm_ll(m)p(x)dx
= n/Hn_l(:p)Hm_l(x)p(:c)d:E.
R

To show completeness, it suffices to prove that if f € L?(R,~) is orthogonal to all Hermite
polynomials, then f = 0. Because the leading coefficient of H,(x) is 1, we have that f is
orthogonal to all monomials ™. As a consequence, for all ¢t € R,

/f e"p Z?n f z)z"p(z)dz = 0.

n=0




We can commute the integral and the series because

o0

[t]" z)p(x)de = | e f(2)|p(z)dx
> F@lp(e)da = [ ¢1f(@)lp(e)d

n=0 ronl
< [[ P [ Ao’ <o
[ mtans [

Therefore, the Fourier transform of fp is zero, so fp = 0, which implies f = 0. This completes
the proof. 0

For each a € R, we have the following series expansion, which will play an important role.

[e.9] n 9

3 %Hn(x) = @ 1)

n=0

Proof of (1): In fact, taking into account that H, = §"1 and that 6™ is the adjoint of D", we
obtain

Finally,

and (1) holds true.
Let us now define the Ornstein Uhlenbeck operator, which is a second order differential
operator. For f € C%(R) we set

Lf(z) = —af'(2) + f"(2).

This operator has the following properties.

1. Lf =—-6Df.
Proof:
0Df(z) = df'(z) = af'(z) — f(2).
2. LH, = —nH,, that is, H,, is an eigenvector of L with eigenvalue —n.
Proof:

LH, = —-6DH,, = —6H), = —néH,,_1 = —nH,.



The operator L is the infinitesimal generator of the Ornstein-Uhlenbeck semigroup. Con-
sider the semigroup of operators {P;,t > 0} on L?(R,~), defined by P,H, = e ™H,, that
is,

Pf= Z W) L2 ®A)€ " Hn.

Then, L is the generator of P;, that is, W =LP,.

Proposition 1.2 (Mehler’s formula). For any function f € L*(R,~), we have the following
formula for the Ornstein-Uhlenbeck semigroup:

Pf(x / fleta+ V1 — e Py)p(y)dy = Ef(e"tx + /1 — e 2Y)),

where Y is a N(0,1) random variable.
Proof. Set P,f(x = [p fleTTa + V1 — e 2ty)p(y)dy

(i) We will first show that P, and P; are contraction operators on L2(R,~). Indeed,

o0

1 _
1P 2y = 3 =5 Had o™ < 1y

n=0

and

. 2
Pl = [ ([ e e VImeTmty) piayie

< [ e+ V= e 2y)p(y)p()dyde
R2
= E[f*(e'X +V1—-e2Y)] = || fll72.)
where X and Y are independent N (0, 1)-random variables.

(ii) The functions {e**,a € R} form a total system in L*(R,~). So, it suffices to show that
Pe™ = Pie® for each a € R. We have

(ﬁtea-)<x) - B [eaxe*t+aY\/1—e—2t:| _ eaxe*te%(l—e*%)

a? —t_ 1,2 -2t a2 = a"e "

= eze™ T29° :eZZ .y Hy,(x)
n=0

“ o n 2 W2

- P(Z.H) @ =etr () @
n=0
= (Pe”)(x).
This completes the proof of the proposition. O



The Ornstein-Uhlenbeck semigroup has the following propreties:
L [Pefllze®qy) < 1fllLe,y) for any p > 2.

Proof: Using Mehler’s formula and Hoélder’s inequality, we can write

p _
||Ptf||Lp(R;y) - /R
< /R . |fle bz + V1 — e2ty) [Pp(y)p(z)dydz

= E[f(e'X +V1—e2Y)P| = | f|],

/Rf (e7'z + V1 — e 2y)p(y)dy pp(m)dx

Ry)"
2. Rof = fand Poof = limy—oo Prf = [ f(y)p(y)dy.
3. DP,f = ¢~'P,Df.
4. f > 0 implies P;f > 0.
5. For any f € L?(R,~) we have
fla) = [ iy =- /0 LPf(x)dt
Proof:
1
f@) = [ fay = 3 oo Hala)
R n=1"""
00 1 00 .
= nzl a<f, Hp)r2(r ) (/0 ne tHn(:c)dt>
(9] 0 1
= /0 <Z EU’ Hn>L2(R;y)(_LPtHn)(x)> dt
n=1
0

Proposition 1.3 (First Poincaré inequality). For any f € C; (R),

Var(f) < 1132

Proof. Set f = fR fd~. We can write

[ @)@ - Pple)da

R

— - [ [ 1@ s @@z

o Jr

= / /f(:z:)éDPtf(x)p(a:)dxdt
o Jr

/ e_t/f’(m)Ptf’(x)p(x)dxdt

0 R

/0 N i | P2 dt

Var(f)

IN

IN

||f/H%2(]R,7)'
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This result as the following interpretation. If f! is small, f is concentrated around its
mean value [ = [ f(z)p(x)dz because

Var(f) = [ (7(a) = F*pla)da.
The result can be extended to the Sobolev space

DY = {f: f, f' € L*(R,7)}

defined as the completion of C}(R) by the norm || f||7, = HfHLz ®Ry) T Hf/”LQ(R'y

1.1 Finite-dimensional case

We consider now the finite-dimensional case. That is, the probability space (2, F,P) is
such that Q = R, F = B(R") is the Borel o-field of R, and P is the standard Gaussian
probability with density p(z) = (2r)~"/ 2¢~1#1/2 I this framework we consider, as before,
two differential operators. The first is the derivative operator, which is simply the gradient of
a differentiable function F': R™” — R:

oF oF
VF_<8:I:17""8$71>'

The second differential operator is the divergence operator and is defined on differentiable
vector-valued functions u: R™ — R as follows:

d(u) = Z (ulxl — gzz) = (u, z) — div u.
i=1 ¢

It turns out that § is the adjoint of the derivative operator with respect to the Gaussian
measure §. This is the content of the next proposition.

Proposition 1.4. The operator § is the adjoint of V; that is,
E((u, VF)) = E(Fd(u))

if F: R" 5 R and u: R™ — R" are continuously differentiable functions which, together with
their partial derivatives, have at most polynomial growth.

Proof. Integrating by parts, and using dp/dx; = —z;p, we obtain

/ (VF,u)pde = 2/ 5 u;pdx
8
= Z ( — / B “pdx + Fummdar)

i=1 R

_ / Fo(updr.

This completes the proof. ]



2 Malliavin calculus on the Wiener space

2.1 Brownian motion and Wiener space

Brownian motion was named after the botanist Robert Brown, who observed in a microscope
the complex and erratic motion of grains of pollen suspended in water. Brownian motion
was then rigorously defined and studied by Norbert Wiener; this is why it is also called the
Wiener process. The mathematical definition of Brownian motion is the following.

Definition 2.1. A real-valued stochastic process B = (Bt)i>0 defined on a probability space
(Q, F, P) is called a Brownian motion if it satisfies the following conditions:

1. Almost surely By = 0.

2. For all 0 < t; < --- <ty the increments By, — By, ,,..., By, — By, are independent
random variables.

3. If 0 < s < t, the increment By — By is a Gaussian random variable with mean zero and
variance t — s.

4. With probability one, the map t — By is continuous.

Properties (i), (ii), and (iii) are equivalent to saying that B is a Gaussian process with
mean zero and covariance function

['(s,t) = min(s,t). (2)

The existence of Brownian motion can be proved in the following way: The function I'(s,t) =
min(s, t) is symmetric and nonnegative definite because it can be written as

min(s,t) = /0 1[0,5] (T)1[07t] (r)dr.

Then, for any integer n > 1 and real numbers aq, ..., ay,,
n n 00
Z a;a; min(t;, t;) = Z aiaj/ 10,4, (T)l[o,tj}(r)dr
i,j=1 1,j=1 0

/s N 2
= / (Z a¢1[07ti](7“)> dr Z 0.
0 Nimt

Therefore, by Kolmogorov’s extension theorem, there exists a Gaussian process with mean
zero and covariance function min(s,t). Moreover, for any s < ¢, the increment B; — By has
the normal distribution N(0,t — s). This implies that for any natural number k£ we have
|
E ((Bt - BS)Qk) - (22;2!' (t — s)*.

Therefore, by Kolmogorov’s continuity theorem, there exists a version of B with Holder-
continuous trajectories of order  for any v < (k—1)/(2k) on any interval [0, T]. This implies
that the paths of this version of the process B are --Hoélder continuous on [0,7] for any
v<1/2and T > 0.

Brownian motion can be defined in the canonical probability space (2, F, P) known as
the Wiener space, where




e () is the space of continuous functions w: Ry — R vanishing at the origin.

e F is the Borel o-field B(2) for the topology corresponding to uniform convergence on
compact sets. One can easily show that F coincides with the o-field generated by the
collection of cylinder sets

C:{MEin(tl)€A1,...,w(tk)€Ak}, (3)
for any integer k > 1, Borel sets Ay,..., Ay in R, and 0 <t < -+ < tp.

e P is the Wiener measure. That is, P is defined on a cylinder set of the form (3) by
P(C) = / Py (@1)Pto—t, (X2 — 1) -+ Pty (T — Tp—1) day -+ dag,  (4)
Ay XX Ag

where p;(z) denotes the Gaussian density p;(z) = (2rt)"/2e=2*/2) 2 € Rt > 0.

The mapping P defined by (4) on cylinder sets can be uniquely extended to a probability
measure on F. This fact can be proved as a consequence of the existence of Brownian motion
on R, . Finally, the canonical stochastic process defined as By(w) = w(t), w € Q,t >0, is a
Brownian motion.

2.2 Wiener integral

We next define the integral of square integrable functions with respect to Brownian motion,
known as the Wiener integral. We consider the set & of step functions

n—1
Pt = Z ajl(t‘j,t‘j+1](t)7 t> 07 (5)
7=0

where n > 1 is an integer, ag,...,a,-1 € R, and 0 =ty < --- < t,. The Wiener integral of a
step function ¢ € & of the form (5) is defined by

n—1

/ thdBt = Z aj(Btj+1 — Btj)-
0

J=0

The mapping ¢ — [ pidB; from & C L*(Ry) to L*(Q) is linear and isometric:

E<(/ wtdBt))—Zaﬂtm—tj)— | ot = el
j=0

The space & is a dense subspace of L?(R, ). Therefore, the mapping

o
<P—>/ prd By
0

can be extended to a linear isometry between L?(R,) and the Gaussian subspace of L%(Q)
spanned by the Brownian motion. The random variable fooo pdBy is called the Wiener integral
of ¢ € L?(R,) and is denoted by B(y). Observe that it is a Gaussian random variable with
mean zero and variance [[¢||7, Ry)"



2.3 Malliavin derivative

Let B = (By);>0 be a Brownian motion on a probability space (€2, F, P) such that F is the
o-field generated by B. Set H = L?(R,), and for any h € H, consider the Wiener integral

B(h) = /O  h(t)dB,.

The Hilbert space H plays a basic role in the definition of the derivative operator. In fact,
the derivative of a random variable F': @ — R takes values in H, and (D;F');>0 is a stochastic
process in L2(€; H).

We start by defining the derivative in a dense subset of L?(£2). More precisely, consider
the set § of smooth and cylindrical random variables of the form

F:f(B(hl)ﬂ"'ﬂB(hn))a (6)
where f € Cp;°(R") and h; € H.

Definition 2.2. If F' € S is a smooth and cylindrical random variable of the form (6), the
deriwative DF is the H-valued random variable defined by

n
of
D.F = B(h1),...,B(hn))hi(t).
¢ ;axi( (h1), .-, B(hn))hi(t)

For instance, D(B(h)) = h and D(By,) = 1jg4,), for any t; > 0.

The derivative operator can be interpreted as a directional derivative. Consider the
Cameron-Martin space H' C €2, which is is the set of functions of the form v (t) = fg h(s)ds,
where h € H. Then, For ant h € H, (DF,h)p is the derivative of F' in the direction of

Jo h(s)ds:
T d .
<DF, h)H = / ht_Dtht = —F <w =+ 6/ h5d8> |6:0.
0 de 0

For example, if F' = By, then

. t1
F (w + e/ hsds> =w(t1) + 6/ hsds,
0 0

so, (DF,h)yy = [;" heds, and DeF = 1pg (1)

The operator D defines a linear and unbounded operator from S C L?(Q) into L*(Q; H).
Let us now introduce the divergence operator. Denote by Sy the class of smooth and cylin-
drical stochastic processes u = (ut)¢>0 of the form

up =Y Fjh(t), (7)
j=1

where F; € S and hj € H.

Definition 2.3. We define the divergence of an element w of the form (7) as the random

variable given by
n

o(u) = zn:FjB(hj) — > (DFj,hy)n.

j=1

10



In particular, for any h € H we have §(h) = B(h).
As in the finite-dimensional case, the divergence is the adjoint of the derivative operator,
as is shown in the next proposition.

Proposition 2.1. Let FF € S and u € Sy. Then
E(Fé(u)) = E(DF,u) ).
Proof. We can assume that F = f(B(hy)...,B(hy)) and

u = Zgj(B(hl) . ,B(hn))hjv
j=1

where hq, ..., h, are orthonormal elements in H. In this case, the duality relationship reduces
to the finite-dimensional case proved in Proposition 1.4. O

We will make use of the notation DpF = (DF,h)y for any h € H and F € S. The
following proposition states the basic properties of the derivative and divergence operators
on smooth and cylindrical random variables.

Proposition 2.2. Suppose that u,v € Sy, F € S, and h € H. Then, if (e;)i>1 is a complete
orthonormal system in H, we have

BG00) = B((u,0h) +E (Y Datises)uDe(vveidn ). ®)
Dp(6(uw)) = o(Dpu) + (h, u>H,’ (9)
0(Fu) = Fé(u)— (DF,u)q. (10)

Property (8) can also be written as

E(6(u)d(v)) = E ( /0 h utvtdt> +E ( /0 h /0 h DsutDtvsdsdt).

Proof of Proposition 2.2. We first show property (9). Consider u = Z?:l Fjh;, where F; € S
and hj € H for j =1,...,n. Then, using Dy(B(h;)) = (h, hj)m, we obtain

Dp(6(u)) = Dh<ZFB )= > (DFj, hy) )
7j=1

- ZF (h, h;) Z Dy F;B(h;) — (Dp(DFj), hj)m)

= (u, h) g + 5(Dhu).
To show property (8), using the duality formula (Proposition 2.1) and property (9), we get
E(6(u)d(v)) = E({v, D(6(u)))y)

e}

= B (> ey D00
i=1
= E <§ (v,€) g <<U,€i>H + 6(D€iu)>>
= E((u,v)y)+E < i De,(u,e;)m D, <v’ei>H>‘
ij=1

11



Finally, to prove property (10) we choose a smooth random variable G € S and write, using
the duality relationship (Proposition 2.1),

E(6(Fu)G) = E(DG,Fu)y)=E((u, D(FG) — GDF) )
= E(OW)F — (u, DF) y)G),

which implies the result because S is dense in L?((2). O

2.4 Sobolev spaces

The next proposition will play a basic role in extending the derivative to suitable Sobolev
spaces of random variables.

Proposition 2.3. The operator D is closable from LP(Q2) to LP(Q; H) for any p > 1.

Proof. Assume that the sequence Fy € S satisfies

Fy LP—(QQ 0 and DFy LP&H) 7,

as N — oo. Then n = 0. Indeed, for any u = Z;VZI Gjh; € Sy such that GjB(h;) and DG
are bounded, by the duality formula (Proposition 2.1), we obtain

E((n.w)g) = lim E(DFy,u)n)
= lim E(Fyé(u)) = 0.

This implies that n = 0, since the set of u € Sy with the above properties is dense in LP($2; H)
for all p > 1. O

We consider the closed extension of the derivative, which we also denote by D. The
domain of this operator is defined by the following Sobolev spaces. For any p > 1, we denote
by DM the closure of S with respect to the seminorm

p/ 2) > 1/p

In particular, F belongs to D!? if and only if there exists a sequence F,, € S such that

1Py = (BGrP) 42 (| [ 00 pa

F,YYFE ana DR, "% DR

as n — o0o. For p = 2, the space D'? is a Hilbert space with scalar product
(o)
(F,G)12 = E(FG) + E < / DtFDtGdt>.
0

In the same way we can introduce spaces D'P(H) by taking the closure of Sy. The corre-
sponding seminorm is denoted by || - ||1,p,1-
The Malliavin derivative satisfies the following chain rule.

Proposition 2.4. Let : R — R be a continuous differentiable function such that |¢'(x)| <
C(1+ |z|%) for some a > 0. Let F € DYP for some p > o+ 1. Then, p(F) belongs to D19,
where ¢ = p/(a+ 1), and



Proof. Notice that |¢(z)| < C'(1 + |z|*"1), for some constant C’, which implies that ¢(F) €
L4(Y) and, by Holder’s inequality, ¢'(F)DF € L9(§2; H). Then, to show the proposition it
suffices to approximate F' by smooth and cylindrical random variables, and ¢ by ¢ *ay,, where
ay, is an approximation of the identity. ]

We next define the domain of the divergence operator. We identify the Hilbert space
L2(; H) with L2(Q2 x Ry).

Definition 2.4. The domain of the divergence operator Dom 6 in L%(Q) is the set of processes
u € L2(2 x Ry) such that there exists §(u) € L*(S)) satisfying the duality relationship

E(DF,u)g) =E(d(u)F),
for any F € D2,

Observe that § is a linear operator such that E(d(u)) = 0. Moreover, ¢ is closed; that is,
if the sequence u,, € Sy satisfies

2 . 2
Up PO and d(up) 8 G,

as n — 0o, then u belongs to Domd and §(u) = G.

Proposition 2.2 can be extended to random variables in suitable Sobolev spaces. Property
(8) holds for u,v € DY2(H) C Domd and, in this case, for any u € DM?(H) we can write

E(6(u)?) < E </Ooo(ut)2dt> +E </OOO /Ooo(Dsut)stdt> — |[ull? 0 1

Property (9) holds if u € DY2(H) and Dju € Dom §. Finally, property (10) holds if F' € D'
Fu € L*(Q; H), u € Domd, and the right-hand side is square integrable.

We can also introduce iterated derivatives and the corresponding Sobolev spaces. The kth
derivative D*F of a random variable F' € S is the k-parameter process obtained by iteration:
k - o f
Dy . F= Z W(B(hl)a ey B(hp))hiy (t1) - - - By ()
i1,eip=1 4 U
For any p > 1, the operator D¥ is closable from LP(Q) into LP(Q; H®¥), and we denote by
D*P the closure of S with respect to the seminorm

p/ 2> > 1/p

For any k > 1, we set Dk = ﬂngDk’p, D2 .= ﬂkzl]D)k’Q, and D> := ﬂklek"’O. Similarly,
we can introduce the spaces D*?(H).

k

1Pl = (EQFP) + (3

=1

/ . (D‘th’th)thl e dt]
]

2.5 The divergence as a tochastic integral

The Malliavin derivative is a local operator in the following sense. Let [a,b] C R4 be fixed.
We denote by Fi, ) the o-field generated by the random variables {Bs — Ba, s € [a, b]}.

13



Lemma 2.5. Let F' be a random variable in D2 N L2(Q, Flaps P). Then DiF = 0 for almost
all (t,w) € [a,b]® x Q.

Proof. If F belongs to SN L?(Q, Fla,p), P) then this property is clear. The general case follows
by approximation. O

The following result says that the divergence operator is an extension of It6’s integral. For
any t > 0 we denote by F; the o-algebra generated by the null sets and the random variables
By, s € 0,t].

Theorem 2.6. Any process u in L*() x Ry) which is adapted (for each t > 0, u; is JFi-
measurable) belongs to Dom d and §(u) coincides with Ité’s stochastic integral

(5(u):/ utdBy.
0

Proof. Consider a simple process u of the form

n—1
U = Z ¢jl(tj7tj+ﬂ(t)’
=0

where 0 < tg < t; < --- < t, and the random variables ¢; € S are ftj—measurable. Then
0(u) coincides with the It6 integral of u because, by (10),

n—1 n—1 tit1 n—1
S(u) =" ¢i(Bi,,, — Bi) = Y /t Digjdt = ¢;(Br,,, — By)),
J=0 j=0""% =0

taking into account that D;¢; = 0 if ¢ > ¢; by Lemma 2.5. Then the result follows by approx-
imating any process in L?(P) by simple processes, and approximating any ¢; € L*((, Fi;, P)
by Fi,-measurable smooth and cylindrical random variables. O

If u is not adapted, d(u) coincides with an anticipating stochastic integral introduced by
Skorohod. Using techniques of Malliavin calculus, Nualart and Pardoux developed a stochastic
calculus for the Skorohod integral.

If v and v are adapted then, for s < t, D;vs = 0 and, for s > ¢, Dsu; = 0. As a
consequence, property (8) leads to the isometry property of Itd’s integral for adapted processes

U,V 1,2 :
e E(6(u)d(v)) = E ( /0 h utvtdt>.

If u is an adapted process in D%2(H) then, from property (9), we obtain

Dt(/ Usst> = Ut +/ DiusdBs, (11)
0 t

because Dyugs = 0 if t > s.

14



2.6 Isonormal Gaussian processes

So far, we have developed the Malliavin calculus with respect to Brownian motion. In this
case, the Wiener integral B(h) = fooo h(t)dBy gives rise to a centered Gaussian family indexed
by the Hilbert space H = L?(Ry). More generally, consider a separable Hilbert space H
with scalar product (-,-)g. An isonormal Gaussian process is a centered Gaussian family
$H1 ={W(h),h € H} satisfying

EW(h)W(g)) = (h, g)u,

for any h,g € H. Observe that £; is a Gaussian subspace of L%(Q).

The Malliavin calculus can be developed in the framework of an isonormal Gaussian
process, and all the notions and properties that do not depend on the fact that H = L?(R,)
can be extended to this more general context.

3 Multiple stochastic integrals. Wiener chaos

In this section we present the Wiener chaos expansion, which provides an orthogonal de-
composition of random variables in L?(f2) in terms of multiple stochastic integrals. We then
compute the derivative and the divergence operators on the Wiener chaos expansion.

3.1 Multiple Stochastic Integrals

Recall that B = (By)>0 is a Brownian motion defined on a probability space (2, F, P) such
that F is generated by B. Let LE(R@ be the space of symmetric square integrable functions
[ RY = ROIf f: RT — R, we define its symmetrization by

1
f(tlv <o 7tn) = E Zf(ta(l)v <o 7t0'(n))7

where the sum runs over all permutations o of {1,2,...,n}. Observe that
Ifll2@ny < 11fllr2y)-

Definition 3.1. The multiple stochastic integral of f € LE(RK) is defined as the iterated
stochastic integral

9] tn to
0 0 0

Note that if f € L2(R), I1(f) = B(f) is the Wiener integral of f.
If f € L*(R") is not necessarily symmetric, we define

In(f) = In(f)-

Using the properties of It6’s stochastic integral, one can easily check the following isometry
property: for all n,m > 1, f € LQ(Rﬁ), and g € Lz(RT),

{O if n # m,

n'<f7§>L2(Ri) 1fn =m.

]E(In(f)lm(g)) = (12)
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Next, we want to compute the product of two multiple integrals. Let f € LE(R’}F) and
g € L2RT). For any r = 0,...,n A m, we define the contraction of f and g of order 7 to be
the element of L2(R7t™~%") defined by

(f r g) (t1> ceestn—py STy .- 75m77")

(t1y eyt @1y e T )G(S1y - ooy S—rs T1y -« oy T )day - - - dy.

f
RY

We denote by f ®, g the symmetrization of f ®, g. Then, the product of two multiple
stochastic integrals satisfies the following formula:

L@ =3 (M) (MY im0 (13

r
r=0
The next result gives the relation between multiple stochastic integrals and Hermite poly-
nomials.
Proposition 3.1. For any g € L*(Ry), we have
B(g)
n(5°") = lolm ,
" LA (R l9llr2(m.)
where & (t1, ... tp) = g(t1) -+ g(tn).

Proof. We can assume that [|g|[z2,) = 1. We proceed by induction over n. The case n = 1
is immediate. We then assume that the result holds for 1,...,n. Using the product rule (13),
the induction hypothesis, and the recursive relation for the Hermite polynomials, we get

L (g% D) = Li(¢®") 11 (g) — nlpa (g™ V)
= H,(B(9))B(g9) — nH,-1(B(g))
= Hyy1(B(9)),

which concludes the proof. ]

The next result is the Wiener chaos expansion.

Theorem 3.2. Every F € L?*(Q) can be uniquely expanded into a sum of multiple stochastic
integrals as follows:

F= E(F) + Zln(fn)a
n=1

where f, € L2(R7).

For any n > 1, we denote by H, the closed subspace of L?(f2) formed by all multiple
stochastic integrals of order n. For n = 0, Hg is the space of constants. Observe that H;
coincides with the isonormal Gaussian process {B(f), f € L?(R;)}. Then Theorem 3.2 can
be reformulated by saying that we have the orthogonal decomposition

L*(Q) = &g Hn.

Proof of Theorem 3.2. It suffices to show that if a random variable G € L%(Q) is orthogonal
to @y oMy then G = 0. This assumption implies that G is orthogonal to all random variables
of the form B(g)*, where g € L2(Ry), k > 0. This in turn implies that G is orthogonal to all
the exponentials exp(B(h)), which form a total set in L?(2). So G = 0. O
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3.2 Derivative operator on the Wiener chaos

Let us compute the derivative of a multiple stochastic integral.
Proposition 3.2. Let f € L2(R"). Then I,(f) € D'? and
Dtln(f) = nInfl(f('a t))

Proof. Assume that f = ¢®", with [|g|l;2,) = 1. Then, using Proposition 3.1 and the
properties of Hermite polynomials, we have

DiI,(f) = Du(Hn(B(g))) = H,(B(9))D:(B(g)) = nH,—1(B(g))g(t)
= ng(t)h-1(g°"Y) = nl,_1(f(-, 1))

The general case follows using linear combinations and a density argument. This finishes the
proof. O

Moreover, applying (12), we have

B( [ + (it ()P ) = [ B (0
= n2(n— 1)!/R+ £ e

= nol| £ 72z
= nE(I.(f)?). (14)
As a consequence of Proposition 3.2 and (14), we deduce the following result.

Proposition 3.3. Let F € L*(Q) with Wiener chaos expansion F = > o0 I,(fs). Then
F e DY2 if and only if

E(IDFI3) = 3 nnlll ful2aqe, < oo,

n=1

and in this case

DiF = Z nly—1(fn(-1))-

Similarly, if k > 2, one can show that F' € D*?2 if and only if

. ?TL 2(Rn) X
n=1

and in this case
Dth St F Z n—l n—k‘—l—l) n—k‘(fn(‘vtla---atk)),

where the series converges in L?(£ x Ri) As a consequence, if F' € D°? then the following
formula, due to Stroock, allows us to compute explicitly the kernels in the Wiener chaos
expansion of F:

fu = SE(D"F). (15)
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Example 3.3. Consider F = B}. Then
filtt) = E(DyBY) = 3E(B{)1pq(t) = 31j,.(t1),
fg(tl,tg) = %E(D?LQB%) = 3E(Bl)1[0,1] (tl V tQ) =0,
fa(titats) = SE(D} ., BY) =11t Via Vi),

and we obtain the Wiener chaos expansion

1 t1 to
B} =3B +6 / / / dBt, dBy,dBy,.
0 JO 0

Proposition 3.3 implies the following characterization of the space D2,

Proposition 3.4. Let F € L*(Q). Assume that there exists an element u € L*(Q; H) such
that, for all G € § and h € H, the following duality formula holds:

E((u, h)gG) = E(Fo(Gh)). (16)
Then F € DY2 and DF = .

Proof. Let F' =% "> I,(fn), where f, € Lz(Rﬁ) By the duality formula (Proposition 2.1)
and Proposition 3.2, we obtain

E(FS§(Gh)) = E(Iu(f2)8(Gh)) = > E(D(In(fn)), ) uG)
n=0 n=0

= E((nLy-1(ful- 1), W) HG).
n=1
Then, by (16), we get

Z E(<nlnfl(fn('> t))? h>HG) = E(<u7 h>HG)a
n=1

which implies that the series > o0 | nl,,—1(fn(,t)) converges in L?(£2; H) and its sum coincides
with u. Proposition 3.3 allows us to conclude the proof. O

Corollary 3.4. Let (F,),>1 be a sequence of random variables in DY? that converges to F
in L?(Q) and is such that
supE(||DF,||%) < .
n

Then F belongs to DY? and the sequence of derivatives (DF,),>1 converges to DF in the
weak topology of L*>(Q; H).

Proof. The assumptions imply that there exists a subsequence (Fy,(;))k>1 such that the se-
quence of derivatives (D F,))x>1 converges in the weak topology of L?(); H) to some element
a € L%(Q; H). By Proposition 3.4, it suffices to show that, for all G € S and h € H,

E({a, h)gG) = E(F§(Gh)). (17)
By the duality formula (Proposition 2.1), we have
E(DF, k), h) nG) = E(F1)6(Gh)).
Then, taking the limit as k& tends to infinity, we obtain (17), which concludes the proof. [
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The next proposition shows that the indicator function of a set A € F such that 0 <
P(A) < 1 does not belong to D2

Proposition 3.5. Let A € F and suppose that the indicator function of A belongs to the
space DY2. Then, P(A) is zero or one.

Proof. Consider a continuously differentiable function ¢ with compact support, such that
¢(x) = 2 for each = € [0,1]. Then, by Proposition 2.4, we can write

D1,y = D[(14)%] = D[p(14)] = 214D14.

Therefore D14 = 0 and, from Proposition 3.3, we deduce that 14 = P(A), which completes
the proof. n

3.3 Divergence on the Wiener chaos

We now compute the divergence operator on the Wiener chaos expansion. A square integrable
stochastic process u = (uy)¢>0 € L*(Q x R.) has an orthogonal expansion of the form

w =3 L(ful 1),
n=0

where fo(t) = E(u¢) and, for each n > 1, f, € L*(R"™) is a symmetric function in the first
n variables.

Proposition 3.6. The process u belongs to the domain of 6 if and only if the series
5(“) = ZIn+1(f~n) (18)
n=0

converges in L?(§2).

Proof. Suppose that G = I,,(g) is a multiple stochastic integral of order n > 1, where g is
symmetric. Then

E((u, DG),) — /R E (In 1 (fo1 ()L 1 (g(, 1)) dt

= 0= [ a0, gy
= nl{fo-1,9)12r7) = n!<fn—179>L2(R1)
= E(Lu(fa-1)1(9)) = E(In(fa-1)G).
If w € Dom 6, we deduce that
E(6(u)G) = E(In(fn1)G)

for every G € H,. This implies that I,,(f,_1) coincides with the projection of §(u) on the
nth Wiener chaos. Consequently, the series in (18) converges in L?(£2) and its sum is equal
to d(u). The converse can be proved by similar arguments. O
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4 Ornstein-Uhlenbeck semigroup. Meyer inequalities

In this section we describe the main properties of the Ornstein—Uhlenbeck semigroup and its
generator. We then give the relationship between the Malliavin derivative, the divergence
operator, and the Ornstein—Uhlenbeck semigroup generator.

4.1 Mehler’s formula

Let B = (Bt)t>0 be a Brownian motion on a probability space (£, F, P) such that F is
generated by B. Let F be a random variable in L?(£)) with the Wiener chaos decomposition

F= ZZO:() In(fn)> fn € Lg(Ri)

Definition 4.1. The Ornstein—Uhlenbeck semigroup is the one-parameter semigroup (1t)t>0
of operators on L?(SY) defined by

T(F) = Ze_ntjn(fn)'
n=0

An alternative and useful expression for the Ornstein—Uhlenbeck semigroup is Mehler’s
formula:

Proposition 4.1. Let B’ = (B})i>0 be an independent copy of B. Then, for any t > 0 and
F € L*(Q), we have
T,(F)=FE(F(e "B+ V1 —e2tB)), (19)

where E' denotes the mathematical expectation with respect to B'.

Proof. Both T; in Definition 4.1 and the right-hand side of (19) give rise to linear contraction
operators on LP(2), for all p > 1. For the first operator, this is clear. For the second, using
Jensen’s inequality it follows that, for any p > 1,

E(|ITi(F)FP) = E([E'(F(e ™' B+ V1 - e B))")
<EE(F(e'B+V1-e2B)") =E(FP).

Thus, it suffices to show (19) for random variables of the form
F = exp()\B(h) - %)\2), where B(h) = fR+ h:dB;, h € H, is an element of norm one, and
A € R. We have, using formula (1),

E' <exp (e‘t/\B(h) +/1— e 2\B/(h) — ;v) )

o0

_ _ A
= exp <e 'AB(h) — Le %2) =) e tﬁHn (B(h)) = T,F,
n=0
because
oo )\n
F=3 N, (B)
n=0
and H,(B(h)) = I,(h®™) (see Proposition 3.1). This completes the proof. O
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Mehler’s formula implies that the operator 7; is nonnegative. Moreover, T} is symmetric,
that is,

E(GTt<F)) = E(FTL‘(G)) = Ze_ntE(In(fn)In(gn))a
n=0

where F' = >"> o I,(f,) and G = Y77 I, (gn)-
The Ornstein—Uhlenbeck semigroup has the following hypercontractivity property

Theorem 4.2. Let F € LP(Q), p > 1, and q(t) = e*(p—1)+1>p, t > 0. Then
I T F (| gy < 1F -

As a consequence of the hypercontractivity property, for any 1 < p < ¢ < oo the norms
|1l and || - ||, are equivalent on any Wiener chaos H,. In fact, putting ¢ = e*(p—1)+1 > p
with ¢ > 0, we obtain, for every F' € H,,

e Fllg = ITeF llg < 1F|lp,

which implies that
qg—1 n/2
17l < (4=1) " 17, (20)

Moreover, for any n > 1 and 1 < p < oo, the orthogonal projection onto the nth Wiener
chaos J, is bounded in LP(£2), and

(p=D"2Fl, ifp>2,

21
(- )", itp<2 &)

[ Tn [l < {

In fact, suppose first that p > 2 and let t > 0 be such that p — 1 = e?. Using the hypercon-
tractivity property with exponents p and 2, we obtain

| TnFllp = e | TiTnFllp < e[| JuFll2 < €| Fll2 < e[| F|l,.
If p < 2, we have

|JnFllp = sup E((JoF)G) < |Fllp, sup [[JaGllg < ™[ F ],
IGllq<1 1Gllq<1
where ¢ is the conjugate of p, and ¢ — 1 = €.

As an application we can establish the following lemma.

Lemma 4.3. Fix an integer k > 1 and a real number p > 1. Then, there exists a constant
Cpke such that, for any random variable F' € k2,

IE(D*F) | gen < cppll Fllp.

Proof. Suppose that F = >°°  I,(f,). Then, by Stroock’s formula (15), E(D*F) = k!f;.
Therefore,

IE(D* )| grex = K| fill gor = VR JF 2.
From (20) we obtain

1Tk Flla < ((p—1) A1)

’JkFHp'
Finally, applying (21) we get
16 Fllp < (p — D)7 @22 P,

which concludes the proof. O
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The next result can be regarded as a regularizing property of the Ornstein—Uhlenbeck
semigroup.

Proposition 4.2. Let F' € LP(Q) for some p > 1. Then, for any t > 0, we have that
T,F € DY and there exists a constant c, such that

IDTF || ey < cpt™ 21 F - (22)

Proof. Consider a sequence of smooth and cylindrical random variables F;,, € S which con-
verges to F in LP(§)). We know that T, F,, converges to T, F in LP(§). We have T;F,, € DYP,
and using Mehler’s formula (19), we can write

D(Ty(F, — Fp)) = D (E’((Fn ~Ey)(e B+ 1 e—2t)B’)>

—t

- Jle—iﬂﬂy (D/((F" — Fp)(e™'B+ \/1——5%)3’))) _

Then, Lemma 4.3 implies that

—t

HD(Tt(Fn_Fm))HLP(Q;H) < i tHFn_Fme-

e
V1—e2
Hence, DT}F, is a Cauchy sequence in LP(Q; H). Therefore, T,F' € D'P and DT.F is the
limit in LP(Q; H) of DT,F,,. The estimate (22) follows by the same arguments. O

With the above ingredients, we can show an extension of Corollary 3.4 to any p > 1.

Proposition 4.3. Let F,, € DYP be a sequence of random variables converging to F in LP(Q)
for some p > 1. Suppose that
sup [ Full1p < oc.
n

Then F € DVP.

Proof. The assumptions imply that there exists a subsequence (F,))x>1 such that the se-
quence of derivatives (DF,x))x>1 converges in the weak topology of L(Q2; H ) to some element
a € LYQ; H), where 1/p+ 1/q = 1. By Proposition 4.2, for any ¢ > 0, we have that T, F
belongs to D' and DT, F,, ) converges to DT, F in LP(; H). Then, for any 8 € LY(Q; H),
we can write

E(DTLF,B)n) = kh_gloE((DTtFn(k)aﬂ>H):kh_)rgoeitE(<TtDFn(k)=5>H)
- g& e '"E((DF,4y, TiB) i) = ¢ 'E((a, T, B) )

= E(<e_tTta, BYm).

Therefore, DT} F = e 'Tia. This implies that DT;F converges to o as t | 0 in LP(Q; H).
Using that D is a closed operator, we conclude that F € D''P and DF = a. ]
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4.2 Generator of the Ornstein-Uhlenbeck semigroup

The generator of the Ornstein-Uhlenbeck semigroup in L?(£2) is the operator given by

LF = lim E
tl0 t

)

and the domain of L is the set of random variables F' € L?(§2) for which the above limit exists
in L2(Q). It is easy to show that a random variable F' = >"°° [ I,(f,), fn € Lg(Rﬁ), belongs
to the domain of L if and only if

> P (fa) 3 < oo
n=1

and, in this case, LF = Y_>° | —nl,(f,). Thus, Dom L coincides with the space D?2.
We also define the operator L~!, which is the pseudo-inverse of L, as follows. For every
F c L*(Q), set

o0

LF ==Y L(f).

n=1
Note that L~! is an operator with values in D?? and that LL~'F = F — E(F), for any
F € L*(Q), so L™! acts as the inverse of L for centered random variables.
The next proposition explains the relationship between the operators D, §, and L.

Proposition 4.4. Let F € L?(Q). Then, F € Dom L if and only if F € D*? and DF € Dom §
and, in this case, we have

O0DF = —LF.

Proof. Let F =%  I,(fn). Suppose first that F' € D12 and DF € Domd. Then, for any
random variable G = I,,,(gm,), we have, using the duality relationship (Proposition 2.1),

E(GODF) = E((DG, DF) i) = mm!gm, fm) 12y = E(GmIn(fm)).

Therefore, the projection of éDF onto the mth Wiener chaos is equal to mI,(fn,). This
implies that the series > o nl,(f,) converges in L*(f2) and its sum is §DF. Therefore,
FeDomL and LF = —§DF.

Conversely, suppose that F' € Dom L. Clearly, ' € D2, Then, for any random variable
G € DM? with Wiener chaos expansion G = > "> I,(gn), we have

E((DG,DF)y) = > _nn!(gn, fa)r2@n) = —E(GLF).

n=1

As a consequence, DF belongs to the domain of § and 0 DF = —LF. O

The operator L behaves as a second-order differential operator on smooth random vari-
ables.

Proposition 4.5. Suppose that F = (F' ..., F™) is a random vector whose components
belong to D**. Let ¢ be a function in C%(R™) with bounded first and second partial derivatives.
Then, ¢(F) € Dom L and

(F)LF".

L((F)) = (F)DF, DF) 1Y 97
i=1 "
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Proof. By the chain rule (see Proposition 2.4), ¢(F) belongs to D»? and
m
I
= F
Z axz (
i=1

Moreover, by Proposition 4.4, ¢(F") belongs to Dom L and L(p(F)) = —d(D(¢(F))). Using
the factorization property of the divergence operator yields the result. O

)DF?,

In the finite-dimensional case (2 = R"™ equipped with the standard Gaussian law), L =
A —z-V coincides with the generator of the Ornstein—Uhlenbeck process (X¢):>0 in R”, which
is the solution to the stochastic differential equation

dX: = V2dB; — X,dt,
where (B¢)¢>0 is an n-dimensional Brownian motion.

4.3 Meyer’s inequality

The next theorem provides an estimate for the LP(€)-norm of the divergence operator for
any p > 1. It was proved by Pisier, using the boundedness in LP(R) of the Riesz transform.

Theorem 4.4. For any p > 1, there exists a constant ¢, > 0 such that for any u € DYP(H),

E(I5(u)?) < ( (1D ) + HE(u>H%>- (23)

As a consequence of Theorem 4.4, the divergence operator is continuous from D'?(H) to
LP(Q), and so we have Meyer’s inequality:

E(0()?) < ¢ (B(IDulfa g )+ Bllullfy)) = collull (24)
This result can be extended as follows.

Theorem 4.5. For anyp > 1, k> 1, and u € D*P(H),

150 ov < 6t (ECD I ) + BIl) ) = gl

This implies that the operator § is continuous from DFP(H) into D*~1P(H).

5 Stochastic integral representations. Clark-Ocone formula

This section deals with the following problem. Given a random variable F in L?(f2), with
E(F) =0, find a stochastic process u in Dom ¢ such that F' = §(u). We present two different
answers to this question, both integral representations. The first is the Clark—Ocone formula,
in which w is required to be adapted. Therefore, the process u is unique and its expression
involves a conditional expectation of the Malliavin derivative of F. The second uses the
inverse of the Ornstein—Uhlenbeck generator. We then present some applications of these
integral representations.
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5.1 Clark-Ocone formula

Let B = (Bt)t>0 be a Brownian motion on a probability space (£, F, P) such that F is
generated by B, equipped with its Brownian filtration (F;)s>0. The next result expresses the
integrand of the integral representation theorem of a square integrable random variable in
terms of the conditional expectation of its Malliavin derivative.

Theorem 5.1 (Clark-Ocone formula). Let F' € DY2 N L3(Q, Fr, P). Then F admits the
following representation:

T
F =E(F) +/ E(D,F|F;)dB;.
0

Proof. By the It6 integral representation theorem, there exists a unique process adated process
u € L%(Q x [0,7]) such that F' € L?(§2, Fr, P) admits the stochastic integral representation

T
F =E(F) +/ udB;.
0

It suffices to show that u; = E(D:F|F;) for almost all (t,w) € [0,7] x Q. Consider a process
v € L2(P). On the one hand, the isometry property yields

T
E(&(U)F):/O E(vsug)ds.

On the other hand, by the duality relationship (Proposition 2.1), and taking into account
that v is progressively measurable,

E(5(v)F) =E (/OT UtDtht) = /OTIE(USE(DtF]]:t))dt.

Therefore, uy = E(D.F|F;) for almost all (t,w) € [0,T] x Q, which concludes the proof. [
Consider the following simple examples of the application of this formula.
Example 5.2. Suppose that F = B}. Then DF = 3Bt21[0,t](s) and
E(D,F|F,) = 3E((B; — By + By)?|Fs) = 3(t — s + B2).

Therefore
t
B} = 3/ (t — s+ B2)dBs. (25)
0

This formula should be compared with Ito’s formula,
¢ t
B} = 3/ B2dB, + 3/ Bgds. (26)
0 0
Notice that equation (25) contains only a stochastic integral but it is not a martingale, be-

cause the integrand depends on t, whereas (26) contains two terms and one is a martingale.
Moreover, the integrand in (25) is unique.
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Example 5.3. Consider the Brownian motion local time (L} )i>0.zer. For any e > 0, we set
pe(w) = (2me)~1/2e "/ 22),
We have that, as € — 0,

t 2
F= / pe(B, — x)ds =% 2. (27)
0

Applying the derivative operator yields

¢ ¢
D,F, = / p.(Bs — x)D,Bsds = / p.(Bs — x)ds.
0

r

Thus

t

E(D,F.|F,) /EpEB — B, + B, — x)|F)ds
t

/pe+s r x)ds

As a consequence, taking the limit as € — 0, we obtain the following integral representation
of the Brownian local time:

t
Ly =E(LY) —l—/ o(t —r, B, — z)dBy,
0

where

o(r,y) = /OT Pi(y)ds.

5.2 Second integral representation

Recall that L is the generator of the Ornstein—Uhlenbeck semigroup.

Proposition 5.1. Let F be in DY? with E(F) = 0. Then the process
u=-DL™'F

belongs to Dom § and satisfies F' = §(u). Moreover u € L?(Q; H) is unique among all square
integrable processes with a chaos expansion

ue =) Lo(fo(t))
q=0

such that fy(t,t1,...,tq) is symmetric in all ¢ + 1 variables t,t1,. .., t,.

Proof. By Proposition 4.4,
F=LL'F=—-§(DL7'F).

Clearly, the process u = —DL™'F has a Wiener chaos expansion with functions symmetric
in all their variables. To show uniqueness, let v € L?(2; H) with a chaos expansion v; =
> ae014(gq(t)), such that the function gy(t,t1,...,%;) is symmetric in all ¢ + 1 variables
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t,t1,...,tqy and such that §(v) = F. Then, there exists a random variable G € D2 such that
DG = v. Indeed, it suffices to take

G=Y L Talo)
_q:oq“‘1 a+190)-

We claim that G = —L~'F. This follows from LG = —6DG = —§(v) = —F. The proof is
now complete. O

It is important to notice that, unlike the Clark—Ocone formula, which requires that the
underlying process is a Brownian motion, the representation provided in Proposition 5.1 holds
in the context of a general Gaussian isonormal process.

6 Existence and regularity of densities. Density formulas

In this Section we apply Malliavin calculus to derive explicit formulas for the densities of
random variables on Wiener space and to establish criteria for their regularity.

6.1 Analysis of densities in the one-dimensional case

We recall that B = (B;)¢>0 is a Brownian motion on a probability space (€2, F, P) such that
F is generated by B. The topological support of the law of a random variable F is defined
as the set of points z € R such that P(Jx — F| <€) > 0 for all € > 0.

Our first result says that if a random variable F belongs to the Sobolev space D2 then
the topological support of the law of F' is a closed interval.

Proposition 6.1. Let F € DY2. Then, the topological support of the law of F is a closed
interval.

Proof. Clearly the topological support of the law of F' is a closed set. Then, it suffices to show
that it is connected. We show this by contradiction. If the topological support of the law of
F is not connected, there exists a point a € R and € > 0 such that P(a —e < F < a+¢€) =0,
P(F>a+¢ <1,and P(F <a—¢€) <1. Let ¢ : R — R be an infinitely differentiable
function such that () = 0if x < a — € and p(z) = 1 if z > a + e. By Proposition 2.4,
©(F) € DY2 but, almost surely, ¢(F) = 1p>a+tey- Therefore, by Proposition 3.5, we must
have P(F > a+¢€) =0or P(F > a+ ¢€) = 1, which leads to a contradiction. O

If a random variable F belongs to D2, and its derivative is not degenerate, then F has a
density.

Proposition 6.2. Let F' be a random variable in the space D2 such that | DF||y > 0 almost
surely. Then, the law of F is absolutely continuous with respect to the Lebesque measure on

R.

Proof. Replacing F' by arctan F', we may assume that F' takes values in (—1,1). It suffices to
show that, for any measurable function g : (—1,1) — [0, 1] such that f_ll g(y)dy = 0, we have
E(g(F')) = 0. We can find a sequence of continuous functions ¢, : (—1,1) — [0, 1] such that,
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as n tends to infinity, g,(y) converges to g(y) for almost all y with respect to the measure
Po F~' 4 ¢, where ¢ denotes the Lebesgue measure on R. Set

%(90) = /x gn(y)dy~

—0o0

Then, 1, (F) converges to 0 almost surely and in L?(£2) because g,, converges almost every-
where to g, with respect to the Lebesgue measure, and f_ll 9(y)dy = 0. Furthermore, by the
chain rule (Proposition 2.4), 1,,(F) € D'2 and

D(¢n(F)) = gn(F)DF,

which converges almost surely and in L?(Q2) to g(F)DF. Because D is closed, we conclude
that g(F')DF = 0. Our hypothesis | DF||g > 0 implies that g(F) = 0 almost surely, and this
finishes the proof. O

The following result is an expression for the density of a random variable in the Sobolev
space D2 assuming that |[DF||g > 0 a.s.

Proposition 6.3. Let F be a random variable in the space D2 such that |DF| g > 0 a.s.
Suppose that DF/||DF||% belongs to the domain of the operator & in L*(Q). Then the law of
F has a continuous and bounded density, given by

p(z) =E (1{F>az}6 (Hé)}f“%)) (28)

Proof. Let 1) be a nonnegative function in C§°(R), and set ¢(y) = [Y__ ¢(z)dz
Then, by the chain rule (Proposition 2.4), ¢(F) belongs to D'? and we can write

(D(p(F)), DF)ir = ¥ (F)| DF|[3;.

Using the duality formula (Proposition 2.1), we obtain

Bw(F) =& ({ D). nz;ﬁn)H) —5 (w(F)3 (@1)) (29)

By an approximation argument, equation (29) holds for 1 (y) = 1(4)(y), where a < b. As a
consequence, we can apply Fubini’s theorem to get

resrey = B(( [ )i (jor, )
= [® (et (7)) =

which implies the desired result. O

Remark 6.1. Equation (28) still holds under the hypotheses F € DY and DF/||DF|% €
]D)LPI(H) for some p,p’ > 1. Sufficient conditions for these hypotheses are F € D> and
E(||DF|~%%) < oo with 1/a + 1/ < 1.
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Example 6.2. Let F' = B(h). Then DF = h and

DF
5 <) — B)[h] 2
IDFTE, Z

As a consequence, formula (28) yields
p(@) = [l E (Lgpsay F)
which is true because p(z) is the density of the distribution N (0, ||h||%).

Applying equation (28) we can derive density estimates. Notice first that (28) holds if
1p>4y is replaced by 1(p_;), because the divergence has zero expectation. Fix p and ¢ such
that 1/p+ 1/q = 1. Then, by Holder’s inequality, we obtain

5< DF )
IDF|%

for all z € R. Applying (30) and Meyer’s inequality (24), we can deduce the following result.

pla) < (P(IF| > |z]))"/

; (30)

Proposition 6.4. Let q, «, [ be three positive real numbers such that 1/q¢+ 1/a+1/5 = 1.
Let F be a random variable in the space D>, such that IE(HDFH;{ZB) < 00. Then, the density
p(z) of F can be estimated as follows:

pa) < cqap (P(F] > |a))

< (BUDFIZ) + [ D°Fl sy 101 ) (31)

6.2 Existence and smoothness of densities for random vectors

Let F = (F',...,F™) be such that F* € D'2 for i = 1,...,m. We define the Malliavin
matriz of F' as the random symmetric nonnegative definite matrix

vr = ((DF', DF?) 1) 1<i j<m. (32)

In the one-dimensional case, y¢ = | DF||%. The following theorem is a multidimensional
version of Proposition 6.2.

Theorem 6.3. If detyr > 0 a.s. then the law of F' is absolutely continuous with respect to
the Lebesgue measure on R™,

This theorem was proved by Bouleau and Hirsch using the co-area formula and techniques
of geometric measure theory, and we omit the proof. As a consequence, the measure (detyp x
P) o F~! is always absolutely continuous; that is,

P(F € B,detyr >0) =0,
for any Borel set B € B(R™) of zero Lebesgue measure.

Definition 6.4. We say that a random vector F = (F!,... F™) is nondegenerate if F* € D2
fori=1,...,m and
E((detvyp)™?) < o0,

for all p > 2.
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Set 0; = 9/0x; and, for any multi-index o € {1,...,m}*, k > 1, we denote by 9, the
partial derivative 9% /(0xq, - - O74,,)-

Lemma 6.5. Let v be an m X m random matriz such that v € DY for all i,j and
E (| dety|™P) < oo for all p > 2. Then, (7_1)” belongs to DV for all i, 7, and

D(yH7 ==Y ()" ()Y Dy (33)
kl=1

Proof. Tt can be proved that P(det~y > 0) is zero or one. So, we can assume that dety > 0
almost surely. For any € > 0, we define 7.1 = (det~y + €)1 A(y), where A(y) is the adjoint
matrix of 7. Then, the entries of 7! belong to D> and converge in LP(£2), for all p > 2, to
those of 77! as e tends to zero. Moreover, the entries of 7! satisfy

sup [|(7e 1)1, < o0,
€€(0,1]

for all p > 2. Therefore, by Proposition 4.3 the entries of 7! belong to D' for any p > 2.
Finally, from the expression 7. 'y = (det~/(det~y + €))I,,, where I,, denotes the identity
matrix of order m, we deduce (33) on applying the derivative operator and letting e tend to
Zero. O

The following result can be regarded as an integration-by-parts formula and plays a fun-
damental role in the proof of the regularity of densities.

Proposition 6.5. Let F = (F',..., F™) be a nondegenerate random vector. Fiz k > 1 and
suppose that F* € DFTL2 fori=1,... m. Let G € D™ and let ¢ € CP(R™). Then, for any
multi-index o € {1,...,m}*, there exists an element H,(F,G) € D*® such that

E(0ap(F)G) = E(p(F)Ha(F, G)), (34)

where the elements Hy(F,G) are recursively given by
Hiy(F,G) =8 (G (v7')" DFY)
j=1

and, for o = (a1,...,q), k> 2, we set
Ha(F7 G) = Hak (F7 H(al,...,ak_l)(F7 G))

Proof. By the chain rule (Proposition 2.4), we have

(D(@(F)), DF)yy = > 0ip(F)(DF',DF)yy = 0ip(F)§
i=1 =1
and, consequently,
0ip(F) =Y (D(p(F)), DFY) g (y5")"".
j=1
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Taking expectations and using the duality relationship (Proposition 2.1) yields

E(0ip(F)G) = E(p(F)H) (F, G)),

where H; = 370, 0 (G (7}1)“ DFj). Notice that Meyer’s inequality (Theorem 4.4) and
Lemma 6.5 imply that H; belongs to LP({2) for any p > 2. We finish the proof with a
recurrence argument. O

One can show that, for any p > 1, there exist constants 8, v > 1 and integers n, m such
that
—_1m
[ Ha(F, G, < cpg||det v || 5 IDFI, 1G]y g - (35)

The proof of this inequality is based on Meyer’s and Holder’s inequalities.
The following result is a multidimensional version of the density formula (28).

Proposition 6.6. Let F = (F',...  F™) be a nondegenerate random vector such that F* €
Dmthee fori=1,...,m. Then F has a continuous and bounded density given by

p(x) = E(1ipsay Ha(F, 1)), (36)
where a = (1,2,...,m).

Proof. Recall that, for o = (1,2,...,m)

H,(F,1)
= Z 5((7;1)1j1DFj15((VEI)QjQDFjQ"'(5((7;1)7”ijij) )) .
jlz"'vjmzl

Then, equality (34) applied to the multi-index a = (1,2,...,m) yields, for any ¢ € C;°(R™),
E(dap(F)) = E(p(F)Ho(F,1)).

Notice that
Fl Fm
N R e
— 00

—00

Hence, by Fubini’s theorem we can write
BOup(F)) = [ 0u@B (L s Ha(P. 1))da: (37)

Given any function i € C§°(R™), we can take ¢ € Cp°(R™) such that ¢ = da¢p, and (37)
yields

E(y(F)) = A (@) E(L oy Ha(F, 1)) da,
which implies the result. ]
The following theorem is the basic criterion for the smoothness of densities.

Theorem 6.6. Let F = (F',...,F™) be a nondegenerate random vector such that F* € D>
foralli=1,...,m. Then the law of F possesses an infinitely differentiable density.
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Proof. For any multi-index 8 and any ¢ € C;°(R™), we have, taking a = (1,2,...,m),
E (930 (F)) = (F)HB(F Ho(F',1))))
- /m Oap(x) E (Lipspy H(F, Ho(F,1))) da.

Hence, for any £ € C5°(R™),

[ optleplayde = | E@)E (Lron) Ho(F Ho( P 1)) do.

Therefore, p(z) is infinitely differentiable and, for any multi-index [, we have

Osp(x) = (=1)/VE (1pomy Hs(F, (Ha(F, 1)) -

This completes the proof. ]

6.3 Density formula using the Riesz transform

In this section we present a method for obtaining a density formula using the Riesz transform,
following the methodology introduced by Malliavin and extensively studied by Bally and
Caremellino. In contrast with (36), here we only need two derivatives, instead of m + 1.

Let @, be the fundamental solution to the Laplace equation AQ,, = &g on R™, m > 2.
That is,

1
Qa(z) =ay'In —, Qu(z)=a,'|z*™ m>2,

Ed

where a,, is the area of the unit sphere in R". We know that, for any 1 <7 < m,

asz(x) = —Cm | o (38)

x|™’
where ¢, = 2(m — 2)/a,, if m > 2 and ¢y = 2/ay. Notice that any function ¢ in C3(R™) can

be written as
m

p(x) = Vo VQu(x) =Y | 0p(z —y)0Qm(y)dy. (39)

i=1 /R™
Indeed,
VSD * VQm(x) = @ * AQm(x) = (p(.%')

Theorem 6.7. Let F' be an m-dimensional nondegenerate random vector whose components
are in D>, Then, the law of F admits a continuous and bounded density p given by

p(l’) = ZE(asz(F - m)H(z)(F’ 1))7
=1

where

zmj 5 (v )Y DF7).

Jj=1



Proof. Let ¢ € C}(R™). Applying (39), we can write

=3 ([ 20ut 0 ).

Assume that the support of ¢ is included in the ball Br(0) for some R > 1. Then, using (38)
we obtain

B( [, p@uwaer-vlw) <t ([ aei)

|F|+R

< eavollBONol ([ T tar)
|Fl-R T
= 2¢,,VOl(B1(0)) [ 0spll oo RE(| F'|) < o0.

As a consequence, Fubini’s theorem and (34) yield

E(p(F)) = Z 0iQum (y)E(Bip(F — y))dy

Rm

= Z 0:Qu(y)E(e(F —y)Hiy(F. 1))dy

3 / B Qu(F — 4) (P 1)y

This completes the proof. ]

The approach based on the Riesz transform can also be used to obtain the following
uniform estimate for densities, due to Stroock.

Lemma 6.8. Under the assumptions of Theorem 6.7, for any p > m there exists a constant
¢ depending only on m and p such that

m
ol < ¢ (g G (F D)
Proof. From
ZE 0,Qum(F — 2)Hey (F, 1)),
applying Holder’s inequality with 1/p 4+ 1/¢g = 1 and the estimate (see (38))
10:Qu(F = 2)| < en|F — 17

yields
p(z) < mepA <E <\F - m\(l_m)q»l/q, (40)

where A = maxi<j<m || H ;) (F, 1)]|p-
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Suppose first that p is bounded and let M = sup,cr p(z). We can write, for any € > 0,

E(|F — z|0—m1) < d-ma 4. / |z — 2| (2)da
|2—z|<e
< l=-may o pe(p—m)/(P—l)M. (41)

Therefore, substituting (41) into (40), we get
M < Ame,, (el_m + C’%qpe(p_m)/le/q) .

Now we minimize with respect to ¢ and obtain M < AC,, ,M'~/™  for some constant Cy, ,,
which implies that M < C7' A™. If p is not bounded, we apply the procedure to p * s,
where 15 is an approximation of the identity, and let ¢ tend to zero at the end. O

7 Malliavin Differentiability of Diffusion Processes. Proof of
Hormander’s theorem

Suppose that B = (By)¢>0, with By = (B}, ..., B{), is a d-dimensional Brownian motion.
Consider the m-dimensional stochastic differential equation

d
dX; = 0j(Xe)dB] + b(Xy)dt, (42)
j=1

with initial condition Xg = z¢ € R™, where the coefficients o;,b: R™ — R™, 1 < j < d are
measurable functions.

By definition, a solution to equation (42) is an adapted process X = (X;)¢>0 such that,
for any 7' > 0 and p > 2,

E( sup |Xt|p> < 00
t€[0,T]

and X satisfies the integral equation

d  pt ' t
Xt =z0+ Z/ 0 (Xs)dB] —I—/ b(Xs)ds. (43)
=Jo 0

The following result is well known.

Theorem 7.1. Suppose that the coefficients o;,b: R™ — R™, 1 < j < d, satisfy the Lipschitz
condition: for all x,y € R™,

max (|oj(z) — o;(y)l; |b(x) — b)) < K|z -yl (44)

Then there exists a unique solution X to Equation (43).

When the coefficients in equation (42) are continuously differentiable, the components of
the solution are differentiable in the Malliavin calculus sense.
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Proposition 7.1. Suppose that the coefficients o;, b are in CHR™;R™) and have bounded
partial derivatives. Then, for allt > 0 and i = 1,...,m, X} € DY, and for r < t and
j=1,....d,

m d t
DiX; =0i(X,)+ Y > | 0kou(Xs)DiXFdB!
k=1/¢=1""
+ Z Bkb X,)Dixkds. (45)

k=1"T"

Proof. To simplify, we assume that b = 0. Consider the Picard approximations given by
Xt(o) = xp and

n+1 _w0+Z/ Ug X(n dBJ

if n > 0. We will prove the following claim by induction on n:

Claim: Xt(n)’i e Db foralli =1,...,m,t > 0. Moreover, for all p > 1 and t > 0,

Y (t) == sup IE< sup DTX§”)|7’> < 0o (46)

0<r<t s€E[r,t]

and, for all 7" > 0 and ¢ € 0,77,

¢
Ypy1(t) < e+ 62/0 Yp(s)ds, (47)

for some constants ¢y, co depending on 7'.

Clearly, the claim holds for n = 0. Suppose that it is true for n. Applying property (11)
of the divergence operator and the chain rule (Proposition 2.4), for any r <t,i=1,...,m ,
and £ =1,...,d, we get

. m t . .
DX D£<z | oixas)
= - (ot + [0 (sjx) asi

=1

= Z<%ae xm +Z akaj (X(MDEXx U’deJ)

=1 k=1"T"

.

.

From these equalities and condition (46) we see that Xt(nﬂ)’i € DY and we obtain, using

the Burkholder—-David—Gundy inequality and Holder’s inequality,
¢
IE( sup ]DTXS("“)V”) <¢ (7p+T(p_1)/2Kp / E (Dg;X§">\p)ds>, (48)
r<s<t r

where
Yp =supE ( sup !Uj(Xt(n))lp> < 0.

n,j 0<t<T
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So (46) and (47) hold for n 4 1 and the claim is proved.
We know that

E <sup | x M — Xs|p> —0

s<T

as n tends to infinity. By Gronwall’s lemma applied to (47) we deduce that the derivatives of
the sequence Xt(n)’l are bounded in LP(€; H) uniformly in n for all p > 2. This implies that
the random variables X} belong to D>, Finally, applying the operator D to equation (43)
we deduce the linear stochastic differential equation (45) for the derivative of X}.

This completes the proof of the proposition. O

Example 7.2. Consider the diffusion process in R
dX; = O‘(Xt)dBt + b(Xt)dt, Xo = xg,
where o and b are globally Lipschitz functions in C1(R). Then, for all t > 0, X; belongs to

DL and the Malliavin derivative (D Xt)r<t satisfies the following linear equation:

D. X, =0(X,)+ /t o'(Xs)D,(Xs)dBs + /t V' (Xs)Dp(X)ds.

T

Therefore, by Ito’s formula,

D, X, = o(X,) exp ( / o(X.)dB, + / (b(x.) - ;<a'>2<xs>>ds).

Consider the m x m matrix-valued process defined by

d t t
Y; = m+2/ 80g(XS)YSdB§+/ Ob(X,)Ysds,
=170 0

where I, denotes the identity matrix of order m and doy denotes the m x m Jacobian matrix

of the function op; that is, '
(9o¢); = ;0.

In the same way, db denotes the m x m Jacobian matrix of b. If the coefficients of equation
(43) are of class C1T% « > 0, then there is a version of the solution X;(zg) to this equation
that is continuously differentiable in xg, and for which Y; is the Jacobian matrix 0X;/0z:

_ox,

Y = .
t 6950

Proposition 7.2. For any t € [0,T] the matriz Y; is invertible. Its inverse Z; satisfies
d
Zy = In— Z/ Z,00¢(X,)dB"
=170

_ /Ot Zs <8b(XS) - gaae(Xs)ﬁaz(Xs)>d5.
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Proof. By means of It6’s formula, one can check that Z;Y; = Y;Z; = I,,, which implies that
Zy =Y, ! In fact,

d t t
ZYy = Inm+)Y. / Zs 80¢(X,)YdBE + / Z,0b(X,)Yds
— Jo 0
d .t
Z/ Z00)(X,)YsdBS
=170
t
—/ Zs< Z@ae s)00(X )>sts
0
/ <Z 00¢(Xs)0oy(X ))sts = 1I,,.

Similarly, we can show that Y;Z; = I,,. O
Lemma 7.3. The m X d matriz (DrXt)é = DI X! can be expressed as

D, X; =YY, 'o(X,), (49)
where o denotes the m X d matrixz with columns o1,...,04.

Proof. 1t suffices to check that the process ®;, := Y;Y, lo(X,), t > r satisfies

d t t
iy =o(X)+ Y / Doo(X,) Dy, dB. + / Ob(X,)®, ds.
E:l ' T

In fact,
d t
X)) + Z/ 00i(X) (VY ‘o (X,))dB"
/ Ob(X) (YaV Lo (X,.))ds
o(X,) + (Y — Y)Y, 'o(X,) = VY, 'o(X,).
This completes the proof. ]

Consider the Malliavin matrix of X;, denoted by vx, := @; and given by

Q7 =>" / D'XID!X]ds.

=170
That is, Q¢ = fg(Dth)(Dth)Tds. Equation (49) leads to

Qi = Y.CY, (50)
where

t

| v ooT ey s
0

Taking into account that Y; is invertible, the nondegeneracy of the matrix (¢ will depend
only on the nondegeneracy of the matrix Cy, which is called the reduced Malliavin matriz.
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7.1 Absolute continuity under ellipticity conditions

Consider the stopping time defined by
S =inf{t > 0:detoo’ (X;) # 0}.

Theorem 7.4. Let (X;)i>0 be a diffusion process with C1** and Lipschitz coefficients. Then,
for any t > 0, the law of X; conditioned by {t > S} is absolutely continuous with respect to
the Lebesgue measure on R™.

Proof. Tt suffices to show that det C; > 0 a.s. on the set {S < t}. Suppose that ¢ > S. For
any u € R™ with |u| =1 we can write

S

t
u'Cou = /uTYS_IUJT(XS)(Y_I)Tuds
0

t
> / IiTlfl (’UTO'O'T(XS)U) (YT ul?ds.
0 vi=

Notice that infj,—; (voo” (X)v) is the smallest eigenvalue of oo”(X), which is strictly

positive in an open interval contained in [0,t] by the definition of the stopping time S and
because t > S.

Furthermore, |(Y; 1) u| > |u||Ys|~!. Therefore we obtain

ul' Cyu > k|u!2,

for some positive random variable k£ > 0, which implies that the matrix C; is invertible. This
completes the proof. O

Example 7.5. Assume that o(xg) # 0 in Example 7.2. Then, for any t > 0, the law of X;
1s absolutely continuous with respect to the Lebesque measure in R.
7.2 Regularity of the density under Hormander’s conditions

We need the following regularity result, whose proof is similar to that of Proposition 7.1 and
is thus omitted.

Proposition 7.3. Suppose that the coefficients o;, 1 < j < m, and b of equation (42)
are infinitely differentiable with bounded derivatives of all orders. Then, for all t > 0 and
i=1,...,m, X} belong to D*.

Consider the following vector fields on R™:

oj = Zoj(:p)ax‘, j=1,...,d,
i=1 ¢

b o= Db (w)axi'
=1

The Lie bracket between the vector fields o; and oy, is defined by

_ _ VvV \%
[0j, 0] = 0jo), — ok0j = 0 o) — 0} 0y,
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where

“ 0
v Lo i
oo = Z 00007, —
J ‘ J k@xi
i4=1
Set
d
1
op=0b-— 3 O'gv(fg
/=1

The vector field oy appears when we write the stochastic differential equation (43) in terms
of the Stratonovich integral (see Section 2.7) instead of 1t6’s integral:

d .t . t
Xy :mo—l—Z/ aj(XS)ong—l—/ oo(Xs)ds.
=Jo 0

Let us introduce the nondegeneracy condition required for the smoothness of the density.
(HC) Hérmander’s condition: The vector space spanned by the vector fields

O1y-..,04, [0,04],0 <1 <d,1<j<d, 0j]05,0,]],0 < 1,5,k <d,...

at the point zg is R™.
For instance, if m = d = 1, o}(z) = a(z) and o}(x) = ap(x); then Hérmander’s condition
means that a(xo) # 0 or a™(zg)ag(zo) # 0 for some n > 1.

Theorem 7.6. Assume that Hérmander’s condition holds. Then, for any t > 0, the random
vector X; has an infinitely differentiable density.

This result can be considered as a probabilistic version of Hormander’s theorem on the
hypoellipticity of second-order differential operators. In fact, the density p; of X; satisfies the

Fokker—Planck equation
0
—— + L7 =0
( 8t + )pt 3

L= 1 i(aoj)’j o +Zm:bi 0
N 2 8:}518% im1 sz

1,j=1

where

Then, p; € C*°(R™) means that 9/0t — L* is hypoelliptic (Hérmander’s theorem).
For the proof of Theorem 7.6 we need several technical lemmas.

Lemma 7.7. Let C be an m X m symmetric nonnegative definite random matriz. Assume
that the entries C* have moments of all orders and that for any p > 2 there exists eo(p) such
that, for all € < ey(p),

sup P (vTCv < e) < €P.

[v]=1

Then E((det C')™P) < oo for all p > 2.

Proof. Let A = inf),—; vT'Cv be the smallest eigenvalue of C. We know that A < det C.

1

Thus, it suffices to show that E(A™P) < oo for all p > 2. Set |C| = (Z?fj:l(Cijf)E. Fix
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€ > 0, and let v1,...,vy be a finite set of unit vectors such that the balls with their center in
these points and radius €2/2 cover the unit sphere S™~!. Then, we have

PA<e = P <|inflvTC'v < e)

1 1
< P< inflvTCv < €, |C‘ S €> +P <|C‘ > €>. (51)

Assume that |C] < 1/e and v] Cvy > 2¢ for any k = 1,..., N. For any unit vector v, there
exists a vy, such that |v — vg| < €2/2 and we can deduce the following inequalities:

vICv > vl Cop — [l Cv — vl Cuy
> 2¢— (o7 Cv — v Cog| + [T Cop — v Cp|)
> 2e—2|C||v—uvg]| > e

As a consequence, (51) implies that

N
PA<e) <P < U{vaCvk < 2€}> +P <\C| > 1) < N(2e)PT2m 4 PE(|CP)
k=1

2m

if e < %eo (p + 2m). The number N depends on € but is bounded by a constant times e~
Therefore, we obtain P(A < €) < CeP for all € < €1(p) and for all p > 2. This implies that
A~! has moments of all orders, which completes the proof of the lemma. O

Lemma 7.8. Let (Z;)i>0 be a real-valued, adapted, continuous process such that Zy = zo # 0.
Suppose that there exist o > 0 and tog > 0 such that, for allp > 1 and t € [0, o],

E ( sup |Zs — z0]p> < CptPh?.

0<s<t

() )

Proof. We can assume that t € [0,tg]. For any 0 < € < t|z9|/2, we have

t 2¢/|z0|
P</ |Zs|ds<e> SP(/ |Z5|ds<e>
0 0

SP( sup  |Zs — 2o >|220’>

0<5<2¢/|20]
2pC’p( 2¢ )pa
S T )
20[P \ |20]

which implies the desired result. O

Then, for allp > 1 and t > 0,

The next lemma was proved by Norris , following the ideas of Stroock, and is the basic
ingredient in the proof of Theorem 7.6.
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Lemma 7.9 (Norris’s lemma). Consider a continuous semimartingale of the form

t d t
Yt=y+/ asds—i—Z/ uldBsy,
where
t d t '
a(t) = « +/ Bsds + Z/ ~.dBy

and ¢ = E (supg<icr(|8e| + [7e| + lae] + |w])P) < oo for some p > 2.
Fiz q > 8. Then, for allr < (q—8)/27 there exists an €y such that, for all e < €y, we have

T T
P (/ Yidt < eq,/ (|ag)® + |wg]?)dt > e) < 1€’
0 0

Proof of Theorem 7.6. The proof will be carried out in several steps:

Step 1 We need to show that, for all ¢ > 0 and all p > 2, E((det Q;)?) < oo, where Q; is
the Malliavin matrix of X;. Taking into account that

E (| det Y, 1P + | det V;|P) < oo,
it suffices to show that E((det C¢)™P) < oo for all p > 2.

Step 2 Fix t > 0. Using Lemma 7.7, the problem reduces to showing that, for all p > 2, we
have

sup P (vTCtv < e) < é€P,
lv|=1

for any € < €y(p), where the quadratic form associated with the matrix Cy is given by

d .t
Cw=3" / (v, Y5 (X)) 2ds. (52)
j=1"0

Step 8  Fix a smooth function V' and use Ito’s formula to compute the differential of
YV (X):

d
dY7'V(Xy) = YN [ow, VI(Xy)dBf
k=1
d
17 (lon V1§ Sl o V1) (X0, (53)
k=1
Step 4 We introduce the following sets of vector fields:
20 = {0'1, . ,Jd},
Y = Aok, V],k=0,...,d,V €X,_1} ifn>1,

41



and
26 = X,
E;L = {[ak,V],k— dVeEn 1

d
[o0,V +%Za], o;,V VeEill} ifn>1,
Jj=1
o= Un:OZ;T

We denote by ¥, () (resp. X (z)) the subset of R™ obtained by freezing the variable x in
the vector fields of ¥,, (resp. X). Clearly, the vector spaces spanned by Y (zg) or by X/(z0)
coincide and, under Hormander’s condition, this vector space is R"™. Therefore, there exists
an integer jo > 0 such that the linear span of the set of vector fields ;-O:() E;- (x) at point xg
has dimension m.

As a consequence there exist constants R > 0 and ¢ > 0 such that

Jo
SN W V) =e, (54)
j=0Vex

for all v and y with |v| =1 and |y — x¢| < R.

Step 5 Forany j=0,1,...,50 we put m(j) = 2~% and define the set
E; —{ Z/ 0, YIWV(X )>2ds§em(j)}.

VeE’
Notice that {vTCyv < €} = Ey because m(0) = 1. Consider the decomposition
Ey C (E(] ﬂEf) U (El ﬁEg) U---u (Ejo—l ﬂE;O) UF,
where F' = Eg N Ey N ---N Ej,. Then, for any unit vector v, we have
Jo—1
P Cw <€) = P(Eo) < P(F) + Y P(E;NES,,).
j=0
We will now estimate each term in this sum.
Step 6  Let us first estimate P(F). By the definition of F' we obtain
<P (T [wroviee) < s 1)
J=0vexy
Then, taking into account (54), we can apply Lemma 7.8 to the process

:1anZvY1V )2,

ful=1 Jj=0vex)
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and we obtain

=

Therefore, for any p > 1, there exists €y such that

—-Pp
) <o

1anZ/vY1V 5))2ds

o Jj= OVEE’

P(F) <¢f

for any € < €.

Step 7 For any j = 0,..., jo, the probability of the event E; N E¥ 7+1 1s bounded by the sum
with respect to V € E; of the probability that the two following events happen:

t
/ (0, Y7V (X)) 2ds < €mU)
0

and
ki/otmysl[% V](X,))*ds
+/0t <”’Y%‘1 <[oo, V]+} i[aj, 2 vﬂ)( )>2ds > ”:(;”,

J=1

where n(j) denotes the cardinality of the set ¥.
Consider the continuous semimartingale ((v, Y, 'V (X;)))s>0. From (53) we see that the
quadratic variation of this semimartingale is equal to

d s
v, Yo T2T,
;/Oma o, V](X,))2d

and the bounded variation component is
s d
/ <v,y;1<00, +%Zo], o,V ) )>dr.
0
7j=1

Taking into account that 8m(j+1) < m(j), from Norris’s lemma (Lemma 7.9) applied to the
semimartingale Y, = v Y, 'V (X,), we get that, for any p > 1, there exists an ¢y > 0 such
that

P(E;NEj;) <€,

for all € < ¢y. The proof of the theorem is now complete. O

8 Stein’s method for normal approximation

The following lemma is a characterization of the standard normal distribution on the real
line.
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Lemma 8.1 (Stein’s lemma). A random variable X such that E(|X|) < oo has the standard
normal distribution N (0,1) if and only if, for any function f € Cg (R), we have

E(f(X) - f(X)X) =0. (55)

Proof. Suppose first that X has the standard normal distribution N(0,1). Then, equality (55)
follows integrating by parts and using that the density p(z) = (1/v/27) exp(—2?/2) satisfies
the differential equation

/
p(z) = —p(z).
Conversely, let p(A\) = E(e*X), X\ € R, be the characteristic function of X. Because X is

integrable, we know that ¢ is differentiable and ¢'(\) = iE(Xe¥). By our assumption, this
is equal to —Ap(\). Therefore, () = exp(—A2/2), which concludes the proof. O

If the expectation E(f'(X) — f(X)X) is small for functions f in some large set, we might
conclude that the distribution of X is close to the normal distribution. This is the main idea
of Stein’s method for normal approximations and the goal is to quantify this assertion in a
proper way. To do this, consider a random variable X with the N(0, 1) distribution and fix
a measurable function h: R — R such that E(|h(X)|) < co. Stein’s equation associated with
h is the linear differential equation

fu(@) — afu(@) = h(z) - E(h(X)), z€R. (56)

Definition 8.2. A solution to equation (56) is an absolutely continuous function fy, such that
there exists a version of the derivative f} satisfying (56) for every x € R.

The next result provides the existence of a unique solution to Stein’s equation.

Proposition 8.1. The function
fumzewﬂ/<mw—Emumky”%y (57)

is the unique solution of Stein’s equation (56) satisfying

lim e **/2f,(z) = 0. (58)

T—300
Proof. Equation (56) can be written as

emz/Q% (e*ﬁ/? fh(x)> — h(z) — E(h(X)).

This implies that any solution to equation (56) is of the form
) = e 4 12 [ (h(y) — B(A(CX))e 2,

for some ¢ € R. Taking into account that

x

lim [ (hy) ~ E(h(X))e " 2dy = 0,
r—300 oo
the asymptotic condition (58) is satisfied if and only if ¢ = 0. O
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Notice that, since [p(h(y) — E(h(X)))e*yz/Qdy = 0, we have

o0

/ " (h(y) — E(h(X)))e v 2dy = - / (h(y) — E(h(X)))e ™V /dy. (59)

—00 T

Proposition 8.2. Let h: R — [0,1] be a measurable function. Then the solution to Stein’s
equation f given by (57) satisfies

T
il <\ ond Iftl <2 (60)
Proof. Taking into account that |h(z) — E(h(X))| < 1, where X has law N(0, 1), we obtain
2 2 o0 a2 2 Vs
@) < e [ ey = |7
x|

because the function z — ¢%°/2 f@T e_y2/2dy attains its maximum at x = 0.
To prove the second estimate, observe that, in view of (59), we can write

T

fi@) = (@) = E((X)) +ae” /2 / (h(y) — E(h(X)))e /2 dy

—0o0

= h(z) — E(h(X)) — ze” /2 /oo(h(y) —E(h(X)))e ¥ 2dy,

T

for every x € R. Therefore

i (@)] < 1+ [a]e”™/? / eV 2dy = 2.

||

This completes the proof. ]

8.1 Total variation and convergence in law

Let F,, be a sequence of random variables defined in a probability space (2, F, P).

Definition 8.3. We say that F, 5F if E[g(Fy)] — Elg(F)] for any g : R — R continuous
and bounded.

We know that F, 5 F if and only if P(F,, < z) — P(F < z) for any point z € R of
continuity of the distribution function of F.
The total variation distance between two probabilities v1 and v on R is defined as

drv(v1,v2) = sup |vi(B) — ve(B)]
BEB(R)

Then, dry (P o F,; !, Po F~1) — 0 is strictly stronger that the convergence in law F, 5F.
Using the Stein’s method, we can prove the following result.
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Proposition 8.3. Let v be a probability on R. Then,

dTV(Va 7) < sup
eI TV

/ ¢/(2) — (@) (dx)|
R

where

Fry = {6 € O'R) : 9]l < \/f 160 < 23.

Proof. Let h : R — [0, 1] be a continuous function and let ¢ be the solution to the Stein’s
equation associated with h, that is,

h(z) — E[MZ)] = ¢ (x) — xdn(z).

Integrating with respect to v yields

[ nav— [ hdry‘ - ] [ ht2) — aon(a)vta

sup
PECH(R):[|8lloo</F 10 [l oo <2

IN

/ 16/ () — 2(a)v(dz)] .
R

This inequality holds for any h : R — [0, 1] measurable, because we can approximate h by
continuous functions almost everywhere with respect to the measure v 4 . Taking h = 1p,
we obtain the result. O

9 Central limit theorems and Malliavin calculus

Let (Bt)ejo,r] be a Brownian motion defined on the Wiener space (€2, F, P). The following
results connects Stein’s method with Malliavin calculus.

Theorem 9.1 (Nourdin-Peccati). Suppose that F € DY? satisfies F = §(u), where u belongs
to the domain in L? of the divergence operator 6. Then,

[dry (Pr,7) < 2E[|1 = (DF,u)]].|

Proof. 1t follows from
E[F¢(F)] = E[6(u)¢(F)] = E[(u, D[¢(F)])u] = E[¢(F){u, DF) g].
Therefore,

[El¢'(F)] = E(Fo(P)]| = |E[¢'(F)[1 = (DF,u)p]]
< 2E[]1 - (DF,u)y]|

for any ¢ € Fry. O

Suppose that F' = fOT usdBg, where u is an adapted measurable process in DV?(H). Then,
T
DtF = Ut +/ Dtusst,
t
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and

T s T
(u, DF) gy = ||u||% +/ (/ DtusdBS> wdt.
0 t

T T
/ </ Dtusst> updt )
0 ¢
1
T s 2 2
E/ (/ utDtusdt> ds| .
0 0

Proposition 9.1. A sequence F,, = OT uﬁ”)st, where u™ s progressively measurable and
u™ e DY2(H), converges in total variation to the law N(0,1) if:

As a consequence,

dTV(PFa 7)

IN

28 (|1 — July]) + 2B (

IN

2B (|1 = Jlul7l) +2

() |u™ |2 — 1 in LY(Q) and
2
(ii) B Jy (Jy uf” Dl dt) " ds — 0.
FEzample 1. The previous proposition can be applied to the following example.
ul™ = V2nt" exp(Bi(1 - 1)) 110.11(¢)-
We can take u = —DL™'F, because
F=LL 'F=—-6DL7'F

and, we obtain

dry(Pp.y) < 2B(|1 — (DF, ~DL'F) )|

If E[F?] = 0% > 0 and we take v, = N(0,02), we can derive the following inequality:

2
drv(F%0) < —Bllo = (DF,u)u]).

Proof.
drv(F, ) = BSI;I(JR)\P(FGB)—%(B)\

€

= sup |P(c'Feco'B)—~(c'B)
BeB(R)

= sup |P(oc"'F € B)—~(B)|
BeB(R)
2

< 2 Ello® ~ (DF.u}ul.

o2
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9.1 Normal approximation on a fixed Wiener chaos

Recall that for any F' € D2 such that E[F] = 0,
2 _
drv (Pr,7s) < ;EHUZ — (DF,—=DL™'F) ).

Proposition 9.2. Suppose F' € H, for some q > 2 and E(F?) = 0?. Then,

2
dTV(PF7’Ya) < ﬁ Var (HDF”%{)

Proof. Using L™1F = —%F and E[|DF||%] = go?, we obtain

d

Ello® = (DF,—DL'F)y]]

1
o® - 6HDFH%

|

IN

Var (||DFH%I)

Proposition 9.3. Suppose that F' = 1,(f) € Hq, ¢ > 2. Then,

(q—1)q

Var (IDFI) < 47

(B(FY) = 30") < (¢ — 1) Var (| DF|%) -

Proof. This proposition is a consequence of the following two formulas:

Var (|DF|3) Zr () () (24 — 200 S 1P cag o (61)

Proof of (61): We have DiF = ql,—1(f(-,t)), and using the product formula for multiple
stochastic integrals we obtain

T
IDF|% = ¢ /0 I (F(1)2dt
! qg—1 2 -
- QQZH( ) )bq—zr—z(f&ﬂf)
= QZ ( 1) Log o0 (f&,f)

J— 2 ~
= w0017 ) (62
r=1

Then, (61) follows from the isometry property of multiple integrals.
The second formula is the following one:

q—1 4
BIFY - 30" =257 rr2(7) 20— 20078 Byocns (63)
r=1
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Proof on (63): Using that —L~'F = %F and L = —0D we can write
E[F'] = E[F x F¥] = FE[(-6DL'F)F* = E[(—DL™'F, D(F®)) ]
~ BUDFD(FY)u) = S EIF|DF ;) (64)
By the product formula of multiple integrals,

q—1 2
q ~
P2 = 117 = Ve + () Bagean (5. (65)
r=0
Then (63) follows from (64), (65), (62) and the isometry property of multiple integrals. [

9.2 Fourth Moment theorem

Stein’s method combined with Malliavin calculus leads to a simple proof of the Fourth Moment
theorem:

Theorem 9.2. Fiz q > 2. Let F,, = I,(f,) € Hq, n > 1 be such that
nll_)ngo E(F?) = o
The following conditions are equivalent:
(i) F, 5 N(0,0?), as n — o0o.
(ii) E(F2) — 304, as n — oo.
(iii) ||DF,||% — qo? in L*(Q), as n — oc.
(iv) For all1<r<q-—1, f, ® fn — 0, as n — o0.

This theorem constitutes a drastic simplification of the method of moments.

Proof. First notice that (i) implies (ii) because for any p > 2, the hypercontractivity property
of the Ornstein-Uhlenbeck semigroup implies

q
sup [, < (p = 1)2 sup [ F [y < o0
n n
The equivalence of (ii) and (iii)) follows from the previous proposition, and these conditions

imply (i), with convergence in total variation. The fact that (iv) implies (ii) and (iii) is a
consequence of || f, @y full < || fn ®r fnll. Let us show that (ii) implies (iv). From (65) we get

q 4
BIEY = So00(7) @0 20 fol o
r=0
~ q_l q 4 ~
= OBl + 300 (?) 2= 20 a0
r=1
@l

Then, we use the fact that (2¢)![| f,®fn||%e2. equals to 2(¢!)?(| f]|% plus a linear combination
of the terms || f,, @, an?{@(zq_QT), with 1 <r < ¢ — 1, to conclude that

I fn @r fullgo@i-—2n =0, 1<r<g-1
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9.3 Multivariate Gaussian approximation

The next result is as multivariate extension of the fourth moment theorem.

Theorem 9.3 (Peccati-Tudor ’05). Let d > 2 and 1 < ¢1 < --- < qq. Consider random
vectors

F, = (Fﬁ’ ’FrCLl) = (Iq1(f?’1L)""7IQd(fg))7
where fi € L2([0,T)%). Suppose that, for any 1 < i < d,

lim E[(F})% = o?.

K3
n—0o0

Then, the following two conditions are equivalent:
(i) F, 5 Ny(0,%), where X is a diagonal matriz such that ¥; = o?.
(ii) For everyi=1,...,d, F! A N(0,02).

Note that the convergence of the marginal distributions implies the joint convergence to
a random vector with independent components.

9.4 Chaotic Central Limit Theorem
Theorem 9.4. Let Fr, =3 02 Iy(fgn), n > 1. Suppose that:
(i) For all ¢ >1, ¢!l| fgnl®* = 02 as n — co.
(i) Forallg>2and1 <r<q—1, fon ®r fon — 0 as n — oco.
(iii) q!|| fonl? < 84, where > g 0q < 00
Then, as n tends to infinity
oo
F,5 N(0,0?), where o?= Zag.
q=1

Assuming (i), condition (ii) is equivalent to (ii)’: limp—eo E(Iy(fgn)*)

)

theorem implies the convergence in law of the whole sequence (I,(fyn),q >
dimensional Gaussian vector with independent components.

9.5 Breuer-Major theorem

A function f € L?(R, ) has Hermite rank d > 1 if
o)
f(z) = Zaqu(x), aq 7 0.
q=d

For example, f(z) = |z[P — [; |«|Pdy(x) has Hermite rank 1 if p > 0 is not an even integer.
Let X = {X}j,k € Z} be a centered stationary Gaussian sequence with unit variance. Set
p(v) = E[XoX,] for v € Z.
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Theorem 9.5 (Breuer-Major '83). Let f € L*(R,~) with Hermite rank d > 1 and assume
> vez |p()|? < 0o. Then,

_ 1y £ 2
Vn-—\/ﬁkzlf(Xk)_}N(Ov ),

as n — oo, where o = D aed qlaZ > ez p(v)?

Proof. From the chaotic Central Limit Theorem, it suffices to consider the case f = a,Hg,
q > d. There exists a sequence {ey, k > 1} in H = L?([0, T]) such that

(ex,ej)m = p(k — 7).

The sequence {B(er)} has the same law as {X}}, and we may replace V;, by

_ Gy o)) =
n—\/ﬁ;Hq(B( k)) Iq(fq,n)v

where fg, = % py e?q. We can write

dla
2r0q = q Z k—j)= Q'GQZP <1 - ‘) L{jv|<n}s

k,j=1 VEZL

q: ||fq,

and by the dominated convergence theorem
E[GY] = a' fanlFro = dlag Y p(v)? = o>,
vEZ

Applying the Fourth Moment Theorem, It suffices to show that forr=1,...,¢ — 1,

fq,n Ry fq,n — ®(g—T) Re (q r) 0.

3|8
M=
b

We have

S plk— ) pli = O plk — i) "p(j — 0.

1,5,k 0=1

31\': ‘ »ngb

qu,n Qr nynH%@(quQr) =

Using [p(k — j)"p(k — 1)77| < |p(k — )|7 + |o(k — )|, we obtain

+
| fan ®r fanl oz < 253" |o(k)]? Z (i)

kEZ li|<n

W S )

l7]<n

Then, it suffices to show that for r =1,...,q — 1,

n” N (i) = 0.

li|<n
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This follows from Holder’s inequality. Indeed, for a fixed § € (0, 1), we have the estimates

nT T N @) < n T Fa(2[n] + 1) <Z|p q) <ed'Ta,

|i|<[nd] i€Z

and

nST < S ()

md)<lil<n na)<lil<n

The first term converges to zero as ¢ tends to zero and the second one converges to zero for
fixed 6 as n — oo. O

9.6 Fractional Brownian motion

The fractional Brownian motion (fBm) B¥ = (BH);>¢ is a zero mean Gaussian process with
covariance

(B;
1
E(BEBH) = Ry(s,t) = §( s 21 — |t — 527

H € (0,1) is called the Hurst parameter.
The covariance formula implies F(Bff — B)2 = |t — s|>/I. As a consequence, for any
v < H, with probability one, the trajectories ¢t — B{ (w) are Hélder continuous of order :

|Bﬁ(w) - Bf(w)’ < G%T(w)‘t - S"yv st € [O7T]'

1 . . .
For H = %, B2 is a Brownian motion.

Properties of the fractional Brownian motion:
1) The fractional Brownian motion has the following self-similarity property. For all a > 0,
the processes

{a "B t >0}

at»

and
{B{',t >0}

have the same probability distribution (they are fractional Brownian motions with Hurst
parameter H).

2)  Unlike Brownian motion, the fractional Brownian motion has correlated increments.
More precisely, For H # %, we can write

p(n) = E(Bl (Bn+1 Bf))
_ % (n+ 1) 4 (n — 1)2H — 2n2H)
~ H(2H — 1)n*"~2,
as n — 0o.
(i) If H > %, then p(n) > 0 and 3_, p(n) = oo (long memory).

(ili) If H < 1, then p(n) < 0 (intermittency) and Y, [p(n)| < cc.
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3) The fractional Brownian motion has finite %—Variation: Fix T'> 0. Set t; = % for

1 < i < n and define ABg = Bg — Bgfl. Then, as n — oo,
" oL L%(Q)a.s.
S |ABf|E T =T ehT,
i=1

where cgy = E[|BH|7).

Proof. By the self-similarity, > ;" ; ]ABE \% has the same law as
T & 1
gZ\BZH — Bf|m.

i=1

The sequence {BZH — B{f 1,1 > 1} is stationary and ergodic. Therefore, the Ergodic Theorem
implies the desired convergence. O

9.6.1 Fractional noise
Let X = B,f — B}?_ 1- The sequence { X}, k > 1} is Gaussian, stationary and centered with
covariance

p(n) = 5 (In+ 1P +|n = 17 = 2[nf2) .

N =

We have p(n) ~ H(2H —1)n?"=2 as n — oco. Then, for any integer ¢ > 2 such that H < 1—2%1,

we have
D lp()]? < o
VEZL

and the Breuer-Major theorem implies

1 c
%ZHQ(BE_BEfl)_)N(O?G%{,q)a
k=1

where U%i,q =q'> ez p(v)d.

9.6.2 CLT for the g-variation of the fBm

For a real ¢ > 1, set ¢, = E[|Z|?], where Z ~ N(0,1). The Breuer-Major theorem leads to
the following convergence:

Theorem 9.6. Suppose H < % and q is not an even integer. As n — oo we have
1 & L
—5 [an\BE —B1 1~ ¢,| 5 N(©,5%,).
k k=1 »9Hyq
Vn P n n

Proof. Use that |z|? — ¢, has Hermite rank 1. O
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9.6.3 Rate of convergence for the quadratic variation

Define for n > 1,
n
Z Ak n y
k=1
where AkﬂBH = Bg — B&. Then,

R |

)

n tends to infinity. In fact, by the self-similarity property, n?2-1S,, has the same law as
% S h_1(BE— B )2 and the result follows form the Ergodic Theorem. To study the asymp-

totic normality, consider

n n

Fo= =3 (8B 1] £ 250 (B - BLY -1,

a. a.
" k=1 " k=1

where o, is such that E[F?] =

Theorem 9.7. Assume H < 3. Then, lim,_,o, Z 7 =23 7 p*(r) and

n"z if H €(0,2)
drv(Pr,,7) <cg x yn~2(logn)2 if H=13
ntH =3 ifHe(3,3)

As a consequence,

Vnm2ils, — 1) 5 N (o, 22/}2(7‘)) .

reZ

1 log Sy,

The estimator of H given by I:Tn =5 2logn satisfies I:Tn % H and

Vnlogn(H, — H) 5N (0,;Zp2(r)) :

reZ
Proof. There exists a sequence {eg, k > 1} in H = L?([0,77]) such that
(exs€j)m = p(k — j).

The sequence {B(ex)} has the same law as {Bf — B/’ |}, and we may replace F), by

1< )

Gn=—> [Blex)’ — 1] = I(fn),

In 1=

where f, = % > r_q €k ® ex. By the isometry property of multiple integrals,

E[Gy) = 2 ullz2qor) = o5 Z | 27; (1 - T) ().

T k,j=1 ™ rl<n
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Since 3, p*(r) < oo, because H < 2, we deduce that lim, o %2 =237 0%(r). We can
write Dy [I2(fn)] = 201 (fn(-,7)] and

IDLa(f)]llE = 4 (Io(fr @1 fn) + | fall7) = 412(fn @1 fa) + 2.

Therefore,
Var ([ID[L(f)lIE) = 16E [(La(fa 1 fa))’]
= 8| fn ®1 fullZ2o1p2)
16 N N
=~ D> plk=5)pli—Op(k—i)p(j — 1)
™ k,j,i,=1
16 ,
< pry (Pn* pn) (i — 5)2
=1
16n 16n
< Py (pn % pn) (k)* = ?Hpn * Pn|’?2(z)a
" kez n

where pp (k) = |p(k)|1{jkj<n—1}- Applying Young’s inequality yields

| pn * pn”??(Z) < ’|Pn||34/3(2)’

so that
3
16n 4
Var (ID[L(f)lH) < 1 PRIGIE
n |k|<n
Thus,
3
4v/n 4
arv(Fn2) < 20 (3 ool
n |k|<n
and the result follows from p(k) ~ H(2H — 1)|k|*~2 as |k| — oc. O
Remark:

Nourdin-Peccati '13 proved the following optimal version of the fourth moment theorem
(assuming E[F?] = 1):
cM(F,) < dpy(Fn,Z) < CM(F,),

where M(F},) = max(|E[F3]|, E[Fi] — 3). As a consequence, the sequence

1
F=— (B = Bfl))? 1]
On
k=1
satisfies: )
n=2 if H €(0,2)
drv(Pp,,v) ~ n_%(logn)2 if H= %
nbH—3 if H e (3,2),

where ~ means that we have an upper and lower bounds with some constants cy 1 and cp 2.
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10 Applications of the Malliavin calculus in finance

In this section we present some applications of Malliavin Calculus to mathematical finance.
First we discuss a probabilistic method for numerical computations of price sensitivities
(Greeks) based on the integration by parts formula. Then, we discuss the use of Clark-Ocone
formula to find hedging portfolios in the Black-Scholes model.

10.1 Black-Scholes model

Consider a market consisting of one stock (risky asset) and one bond (risk-less asset). We
assume that the price process (S;)¢>0 follows a Black-Scholes model with constant coefficients

o >0 and p, that is,
2
Sy = Sp exp <(,u - 2) t+ UBt) ; (66)

where B = (By)c[o,7] is @ Brownian motion defined in a complete probability space (2, F, P).
We will denote by (F¢)cjo,r the filtration generated by the Brownian motion and completed
by the P-null sets. By It6’s formula we obtain that S; satisfies a linear stochastic differential
equation

dSt = ,uStdt + O'StdBt. (67)

The coefficient p is the mean return rate and o is the wvolatility. The price of the bond at
time t is €™, where r is the interest rate.

Consider an investor who starts with some initial endowment x > 0 and invests in the
assets described above. Let a; be the number of non-risky assets and §; the number of stocks
owned by the investor at time ¢. The couple ¢; = (a4, B;), t € [0,T], is called a portfolio, and
we assume that the processes oy and f; are measurable and adapted processes such that

T T
/ det<oo,/ || dt < o0
0 0

almost surely. Then the value of the portfolio at time ¢ is Vi(¢) = aue”™ + ;5. We say that
the portfolio ¢ is self-financing if

t t
V(o) =o-+r [ awds+ [ puds.
0 0

From now on we will consider only self-financing portfolios. It is easy to check that the
discounted value of a self-financing portfolio V;(¢) = e "*V;(¢) satisfies

~ t ~
Ti(6) = x+/0 8,d3,,

where S; = e~"tS,. Notice that

dgt = (,u - 7") §tdt + O'gtdBt.

Set § = =", Consider the martingale measure defined on Frp, by

dQ 0?
dip = exp (—eBt — 2) .

T
o

o6



Under @) the process Wy = B; + 0t is a Brownian motion and the discounted price process
S; = eS8, is a martingale because

dgt = Jgtth.

Suppose that F > 0 is an Fp-measurable such that Eg(F?) < oo. The random variable
F represents the payoff of some derivative. We say that F' can ve replicated if there exists
a self-financing portfolio ¢ such that Vp(¢) = F. The It6 integral representation theorem
implies that any derivative is replicable, and this means that the Black-Scholes market is
complete. Indeed, if suffices to write

T
e T'F=Eg(e™F) + / usdW,
0

and take the self-financing portfolio ¢y = (o, 5¢), where

Ut

e (68)

The price of a derivative with payoff F' at time t < T is given by the value at time ¢ of a
self-financing portfolio which replicates F.Then,

Vi(g) = e 7TV EQ(F|F). (69)

10.2 Computation of Greeks

In this section we will present a general integration by parts formula and we will apply it to
the computation of Greeks in the Black-Schole smodel.

Let W = {W(h),h € H} denote an isonormal Gaussian process associated with the
Hilbert space H. We assume that W is defined on a complete probability space (92, F, P),
and that F is generated by W.

Proposition 10.1. Let F, G be two random variables such that F € DY2. Consider an
H-valued random variable u such that D, F = (DF,u)y # 0 a.s. and Gu(D,F)~! € Domd.

Then, for any continuously differentiable function function f with bounded derivative we have
E(f'(F)G) = E(f(F)H(F,G)), (70)
where H(F,G) = §(Gu(D,F)™1).

Proof: By the chain rule we have

Hence, by the duality relationship we get

E(f'(F)G) = E(Du(f(F)(D,F)"'Q)
— E(DUF)),u(DuF)IG),y)
= E(f(F)§(Gu(D,F)™)).

This completes the proof. ]



Remark 10.1. If the law of F' is absolutely continuous, we can assume that the function f
is Lipschitz.

Remark 10.2. Suppose that u is deterministic. Then, for Gu(D,F)~! € Dom§ it suffices
that G(D,F)~ € D2, Sufficient conditions for this are the following: G € D%*, F € D?2,
E(G%) < oo, E((D,F)™'?) < 00, and E(|DD,F|%) < oc.

Remark 10.3. Suppose we take w = DF. In this case

H(F,G) =6 <GDF> ,

2
IDF|

and Equation (66) yields

, B GDF
E(f(F)G) = E (f(F)5 (HDF”%» : (71)

10.2.1 Computation of Greeks for European options

A Greek is a derivative of a financial quantity, usually an option price, with respect to any
of the parameters of the model. This derivative is useful to measure the stability of this
quantity under variations of the parameter. Consider an option with payoff ' > 0 such that
Eg(F?) < co. From (69) its price at time ¢ = 0 is given by

Vo =Eg(e™F).

The most important Greek is the Delta, denoted by A, which by definition is the derivative
of Vi with respect to the initial price of the stock Sjy.

Suppose that the payoff F' only depents on the price of the stock at the maturity time 7.
That is, I = ®(S7). We call these derivative European options.

Notice that % =3 Asa consequence, if ¢ is a Lipschitz function we can write

So *

Vo e OST, €T /
A=—=F P —) = FEo(® .

650 Q(e (ST) 650) SO Q( (ST)ST)

Now we will apply Proposition 10.1 with u =1, F = St and G = Sy. We have

T
DSt = / D,Srdt = oT Sp. (72)
0

Hence, all the conditions appearing in Remark 2 above are satisfies in this case and we we

have ) -
~1\ _ A L Wr
srms ) -o( )

As a consequence,

e—rT

A= SooT

Eq(®(ST)Wr). (73)

o8



The Gamma, denoted by I', is the second derivative of the option price with respect to
Sy. As before we obtain

82‘/0 —rT =11 aST 2 e*T‘T 1 2
I'=——>=FE o — = ——Fq(® .

Suppose now that @’ is Lipschitz. We first apply Proposition 10.1 with 5’%, F = St and
u = 1. From (72) we have

5 (5% (DUST)—l) —5 ( f;) St (Z/IT - 1>

and, as a consequence,
%1%
Eql#"(51)5}) = Bo (#(sn)sr (17 <1)).
Finally, applying again Proposition 10.1 with G = St (% — 1), F =57 and u = 1 yields
- W 1
J— T pa— —_—
(e (S 0) ([ o)) = o S )

_ (Wi 1 Wr
 \e21? 2T  oT

Eo <¢>'(5T)5T (ZV; - 1)) _ K, ((I)(ST) <:2Vi - U%T - ZVIT)) .

Therefore, we obtain

and,

e
B S2oT
The derivative with respect to the volatility is called Vega, and denoted by 9:

aVO —rT 5/ aST
e =Eq(e" @ (ST)aT

Applying Proposition 10.1 with G = SpWrp, F' = Sy and u = 1 yields

(5<ST(WT—JT) </OTDtSTdt>1> _ 5(%4)

9 = )= e "TEQ(®(S7)St (Wr — oT)).

As a consequence,
T w2 1
v=¢e¢"" Eg O(Sp) | — ———Wrp . (75)
ol o

By means of an approximation procedure these formulas still hold although the function
® and its derivative are not Lipschitz. We just need ® to be piecewise continuous with jump
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discontinuities and with linear growth. In particular, we can apply these formulas to the case
of and European call-option (®(z) = (z— K)™), and European put-option (®(z) = (K —z)"),
or a digital option (®(z) = 1y,-}). For example, using formulas (73), (74), and (75) we
can compute the values of A, I' and ¥ for an European Call option with exercise price K and
compare the results with those obtained in this case using the explicit expression for the price

Vo= SoN(dy) — Ke "' N(d_),
where N is the distribution function of the law N(0, 1), and
log % + (7’ + %2> T

do —
- VT

We can compute the values of the previous derivatives with a Monte Carlo numerical
procedure.

10.2.2 Computation of Greeks for exotic options

Consider options whose payoff is a function of the average of the stock price % fOT Sidt, that

is
1 T
F=o| = Sidt | .
(7] s)
For instance, an Asiatic Call-option with exercise price K, is a derivative of this type, where

+
F= (% fOT Sidt — K ) . In this case there is no closed formula for the density of the random
variable & fOT Sidt. From (69) the price of this option at time ¢ = 0 is given by

—rT 1 T
Vo=e"Eq (@ (5 [ Sut) ).
0

Let us compute the Delta for this type of options. Set S = % fOT Sidt. We have

oS —rT — =
Ty = & Eo(®'(Sr)S7).

A ——
0S50 ) So

Vo T ot
=——=F o
Sa = Fale ¥/ (5)

We are going to apply Proposition 10.1 with G = Sp, F = St and u; = S;. Let us compute

1 [T o (T
DiF == | DSdr=— [ Sdr,
t T /0 tS dr T /t Sydr

5 GS. _ 24(_s
ST S,DyFdt o \ ST Sdt

T T
2 [ Ji s | Jy e (S oSpar) i
p T 2
Jo Sedt (S sudt)
2 [ SidW,
77—17 + 1.
o [y Sedt

and
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Notice that

T 1 T
/ Stth - — <ST - So - ’I“/ Stdt) .
0 o 0

5 GS. _20Sr-5) 2 _2 (5%
ST SDyFdt o2 [ S,dt o o® \ [l St ’

where m =r — %2 Finally, we obtain the following expression for the Delta

2¢~TT — St — S
A — 7E @ —_— — .
Soo? ¢ ( (57) < TSt m))

10.3 Application of the Clark-Ocone formula in hedging

Thus,

In this section we discuss the application of Clark-Ocone formula to find explicit formulas for
a replicating portfolio in the Black-Scholes model.
Suppose that F' € DY2. Then, applying Clark-Ocone’s formula, from (68) we obtain

efr(Tft)

Consider the particular case of an European option with payoff F' = ®(Sy). Then

e—r(T—t) ,
B = ———Eq (¥ (Sr)oSr|F)

O'St
S S
_  r(T-1) 1 RT o \PT
(& EQ <(I) ( St St) St |]:t>

— e_T(T_t)EQ (‘I)/(xST_t)ST—t) |z=s5;-

In this way we recover the fact that 8; coincides with %(t> St), where F(t,z) is the price
function.

Consider now an option whose payoff is a function of the average of the stock price
St = % fOT Sidt, that is F = ® (St). In this case we obtain

T—t

8-°_F @’(S)l/TSd\]-“
t = s, Q TTt rar|Jst | .

We can write
S tS—i-l/TSd
= — _— T
T T t T . rWh,

J— t .
where S; = % fo S.dr. As a consequence we obtain

e r(T-1) tr  y(T —t)= y(T' —1t)—=
=g ra (¥ (7 + O 05 ) () s
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