

Elementary theory of the infinity-category of infinity-groupoids

Thesis director:

Joachim Kock kock@mat.uab.cat, <http://mat.uab.cat/~kock>,
co-IP of the UAB Topology Group, <http://mat.uab.cat/topalg>

Research project:

Homotopy theory is the branch of mathematics concerned with space in its most abstract form, classically modelled by topological spaces up to homotopy. Over the past 50 years, the more abstract combinatorial notion of Kan complex became a preferred model for homotopy theory, and they are now interpreted as infinity-groupoids, and form together an infinity-category. Higher category theory has thus become a powerful language for homotopy theory, but also highly technical. Currently, setting up the theory requires the machinery of Quillen model categories. On the other hand, in connection with Voevodsky's univalent foundations programme, it was discovered recently that Constructive Type Theory, a fully self-contained logical framework, is also a model for infinity-groupoids, via an interpretation in Quillen model categories. Type Theory and Quillen model categories share certain strictnesses that do not have an intrinsic homotopical interpretation. Taking the clue from Constructive Type Theory, the present project aims at developing a purely synthetic language for infinity-groupoids, independent of model categories. It should implement more closely the model-independent way homotopy theorists think about infinity-groupoids, in strict analogy with Lawvere's elementary theory of the category of sets (the categorical account of set theory, which is much closer to mathematical practice and intuition than Zermelo-Frenkel set theory), assuming classical first-order logic.