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Un matemàtic és
una màquina per
transformar cafè
en teoremes.

(Paul Erdös)







































































Demostració

Podem demostrar
que és
impossible?
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Teorema de Pitàgores

a2+b2= c2
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Teorema de Pitàgores: Demostració
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Teorema de Pitàgores: Demostració

Àrea = (a+ b)2 = a2 + b2 + 2ab

45



Teorema de Pitàgores: Demostració

Àrea = (a+ b)2 = a2 + b2 + 2ab
45



Teorema de Pitàgores: Demostració

Àrea =
ab
2
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Teorema de Pitàgores: Demostració

Àrea = 4
ab
2

= 2ab
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Teorema de Pitàgores: Demostració

Àrea = c2
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Teorema de Pitàgores: Demostració

Àrea = c2
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Teorema de Pitàgores: Demostració

Àrea = c2 + 2ab
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Teorema de Pitàgores: Demostració

a2 + b2 + 2ab c2 + 2ab

a2 + b2 + 2ab = c2 + 2ab
a2 + b2 = c2
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Teorema de Pitàgores: Demostració
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a2 + b2 + 2ab = c2 + 2ab
a2 + b2 = c2
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La Hipotesis de Riemann i els
nombres primers

Bernhard Riemann
1859

Michael Atiyah
2018
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Quants nombres primers hi ha?

Hi ha infinits nombres primers.

Demostració per contradicció:
Suposem que només hi ha n nombres
primers: p1 = 2,p2 = 3,p3 = 5, . . . ,pn

x = p1 · p2 · · ·pn + 1

* Si x és primer ⇒ Tenim un nou primer!
* Si x no és primer ⇒ Existeix un nombre p
primer que divideix a x.
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* Si p no està a la nostra llista

⇒ Tenim un
nou primer!

* Si p ja està a la nostra llista ⇒
p divideix x
p divideix p1 · p2 · · ·pn.

Aleshores p divideix a

x− p1 · p2 · · ·pn =

= p1 · p2 · · ·pn + 1− p1 · p2 · · ·pn = 1

Per tant p divideix a 1.
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Moltes gràcies!
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