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Un matematic és
una maquina per

transformar cafe
eh teoremes.

(Paul Erdos) —)
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J Demostracio

Podem demostrar
que és
Impossible?
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* Si p no esta a la nostra llista = Tenim un
nou primer!@
* Si p ja esta a la nostra llista =
p divideix x
p divideix py - ps - - - pn.
Aleshores p divideix a

X—Pp1-p2---pn=

=pi P2 Potl—pi-ps-pp=1

~

Per tant p divideix a 1. £



Moltes gracies!



