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Classical coding theory [5, 8] is concerned about the representation of infor-
mation that can be transmitted over some noisy channel. In many engineering
products, developed using results of the coding theory, optimal codes are used.

Let Fy be the set of all vectors of length n over an alphabet F; of size q.
The (Hamming) distance between two vectors u,v € Fy, denoted by d(u,v), is
the number of coordinates in which they differ. An (n, M,d) g-ary code C' is
a subset of Iy’ with cardinality M and minimum (Hamming) distance d. The
vectors of a code are called codewords and the minimum distance of C, d, is the
minimum value of d(u,v) for all u,v € C'and u # v. If C' is a subgroup of Fy,
then we say that C is linear. Finally, we say that C is optimal if it has the best
possible parameters q, n, d, M, that is, at the same time we cannot increase
M for given values ¢, n, d, and we cannot increase d for given values ¢, n, M.
Optimal codes have being studied intensively [9, 7, 12, 10].

With the extensive use of high performance computers, several new research
lines have arisen in the border between mathematics and computer science: the
study of algorithmic to manipulate efficiently different mathematical structures
and its applications. Nowadays, there exist many tools of symbolic calculation
that perform exact calculations (in opposition to approximate) with a great va-
riety of mathematical objects. Typical examples are the commercial products
such as Mathematica, MAPLE and MAGMA; though we can also find noncom-
mercial products like Sage, GAP and Macaulay.

For the research and development of applications based on error-correcting
codes, it is necessary to have software tools to simulate such codes. Nowadays,
MAGMA is the best software designed to solve computational difficult problems
in algebra, combinatorics, and especially, in coding theory, since it has very com-
plete and efficient packages to work with them. More specifically, MAGMA has
functions to work with linear error correcting codes over finite fields, modular
rings and Galois rings [3]. Moreover, the members of our research group have
implemented recently a new package in MAGMA with all the necessary functions
to work with Z,Z4-additives codes [2]; and have also added new functionalities
to the already existing package for linear codes over finite rings [1]. These
two new packages can be downloaded from the web page http://ccsg.uab.cat,
and the second one has already been integrated inside MAGMA system. For
more information on the software MAGMA in general, visit its official web page
http://magma.maths.usyd.edu.au/.

It is known that for many parameters, the best codes are nonlinear [4, 6],
that is, for given values ¢, n, d, the codes with the maximum number of code-
words M, are nonlinear. However, currently, neither MAGMA nor any symbolic
computation system have functions to manipulate such codes in a efficient way
and without storing all codewords. We have started the development of a new



MAGMA package to work with nonlinear codes over finite fields [11, 13], with the
double purpose of being able to analyse new optimal codes for both previous ap-
plications and to offer a new research tool in the coding theory field. The main
aim of the project is to contribute on the development of this package. Specif-
ically, the objectives are the study of the main properties of nonlinear codes:
size, minimum distance, kernel, coset representatives; the study of the MAGMA
software and the new package to work with nonlinear codes; and the construc-
tion of some optimal nolinear codes to be included in the MAGMA database
connected with the package.
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