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Matroids are a combinatorial structure that generalizes, for instance, the concept of families of
subspaces of a vector space. One way among many to associate a matroidM to a configuration X
of n vectors in a vector space V is to specify all subsets B of [n] = {1, 2, . . . , n} that index bases
of V among X. Abstractly, a matroid on [n] can be characterized as a systemM of subsets of [n]
that satisfies Steinitz’ basis exchange axiom:

If A 6= B ∈M and a ∈ A\B, there exists some b ∈ B \A such that A−a+b ∈M.

One way to recover geometry from this combinatorial abstraction is to work with characteristic
vectors, by assigning to each basis B the 0/1-vector χ(B) of length n that has a ‘1’ precisely in
the coordinates indexed by B. The convex hull

MBP(M) = conv{χ(B) : B ∈M}

of these points is called the matroid base polytope of M.

Obviously, one can study the polytope of characteristic vectors associated to any set system,
but it is less than clear what, if anything, one might learn from it. However, in the case of matroids
these polytopes are quite well-behaved:

• Since all bases have the same cardinality, all characteristic vectors χ(B) lie on a sphere of

radius
√
|B|, and therefore all of them are vertices of MBP(M).

• Edges reflect basis exchange: Two vertices χ(A), χ(B) span an edge in MBP(M) iff A, B
satisfy Steinitz’ axiom.

Hidden just beneath the surface of Steinitz’ axiom we find the action of the symmetric group Sn

on [n]: we can regard a Steinitz interchange a ↔ b as the transposition (a, b), and such transpo-
sitions generate Sn. Geometrically, each edge of MBP(M) materializes the orthogonal reflection
of its vertices across a hyperplane of equation xi = xj , say, and all of those form a very classical
object: the hyperplane arrangement associated to the root system An−1.

There are various more or less abstract definitions to generalize these concepts from An−1 and
its associated regular polytope (the simplex) to the other classical root systems: BCn (cubes), Dn,
H3 (dodeca/icosahedron), H4 (120-cell and 600-cell), F4 (24-cell), E6, E7, E8, but the hands-down
winner is the following charming theorem by Israel Gelfand and Vera Serganova:

Theorem-Definition (Gelfand–Serganova, 1987)
Let Q be a convex polytope. Consider, for each edge e of Q, the hyperplane He orthogonal

to e that passes through its midpoint. Let W be the group generated by the reflections in all He.
Then W is finite iff Q is a Coxeter matroid polytope.

1



2 JULIAN PFEIFLE

Even though there’s already a textbook [2] on the subject, in truth we know very little about
Coxeter matroid polytopes:

• What can you say about the combinatorial types of faces of Coxeter matroid polytopes?
For An−1, the only possible 2-faces are triangles and squares [2, Theorem 1.12.8], but for
the other types even this very basic question seems to be open (though easy).

• What can you say about the number of faces of each dimension?
• Enumerate the combinatorial types of Coxeter matroid polytopes in dimension d with
n vertices, for example for d ≤ 4 and “moderate” n. A better complexity measure will
probably be the size of the orbit containing the vertices of Q.

• Generalize the formula [1] for the volume of Q in the case An−1 to the other cases, starting
with BCn.

• A very important construction in toric and tropical geometry is the subdivision, in the case
An−1, of matroid polytopes into smaller matroid polytopes. This was first considered by
Lafforgue [3]. Speyer [4] conjectured that the subdivision corresponding to series-parallel
matroids have the largest number of faces, and he proved this in the case of tropical linear
spaces. What can you say about subdivisions of Coxeter matroid polytopes into smaller
Coxeter matroid polytopes?

• Generalize operations on matroids, such as duality, contraction, extension and deletion,
from An−1 to the other cases.

Obviously, we won’t try to answer all of these questions in two months, or all the new ones
we’ll come across in our investigations!

However, the prerequisites being quite modest (essentially, having read chapter 6 of [2] and
whatever else you need to more or less understand that material), we will be able to dedicate most
of our time to research. For visualization and calculations you can use software such as polymake,
sage or gap.
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